



































































































































COXETER GROUPS

Lent term

Rachael Boyd rachaelboyd dpmms.cam.ae.uk

M Davis geometry and topology of Coxetergroups
A Thomas Geometric and topological aspectsof Coxetergroups andbuildings
Mostly followingthisone

course outline

1 Geometric reflection groups
2 Defining abstract reflection groups

3 combinatorics of Coxeter groups
4 The tits representation

s Finite Coxeter groups
6 The basic construction
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1 Geometric Reflection Groups

Coxetergroups are discrete groups generated by reflections In 42,3 we'll make this precise In this sectionwe'll
see someexamples

Recall a Riemannian manifold is a smooth manifold M with a positive definite inner product on Tam Krem
This inner product allows us todefine some notions

isometries innerproduct preserving diffeomorphism

metric distance

geodesics distanceminimisingcurves

sectional curvature

1 1 Notation

n dimensional sphere cant centred at origin with roundmetric
E n dimensional Euclidean space IR
Hh n dimensional real hyperbolic space

X any of these spaces En orHin

Isom x isometrygroupof X

1.2 Remark E andHln are all Riemannian manifolds with constant sectional curvature 1 o I respectively

Aside Poincare disc model for Ai

O

d d

all points lieinsidethe
a o unit disc

geodesics on disc are semicircles or diameters

i

1.3 Definition A hyperplane 71 E X is a totally geodesic codimension I submanifold of X

A hyperplane 71 separates X intotwo connected components called halfspaces

Ex 2

y

For each HCX t a reflection e Isom xn which a fixes H and b exchanges the associated half spaces






































































































































1 4 Example finite dihedral groups

with hyperplanes e andez meeting at angle Im cir
technically not hyperplanes because not totally geodesic

Then sis is a rotation by I i e sis I am
s sa

The group we si sa Dam s so I s si sis
identity

groupgeneratedbyreflectionsstands groupgeneratedbyletters sis
is the dihedral group oforder am symmetries ofthengon

1.5 Example infinite dihedral group

E IR
hyperplanes are points e.g o and I

É É
let s andsa be reflections about these points

i e S it t and sect a t t ter Then the product sis is translation by 2
Ti e cs.sc I k means dos thens

and we si sa is si e Do is the infinite dihedral group

Notation if cs.se I 72 i.e sis has infiniteorder then we will write sis o e
Hence we can also write w sus I s se sis o e

1.7 Definition let X be a topological space and Gax by homeomorphisms Let an bethe orbit of nex
Then a fundamental domain for Gax is kex sit
K is closedand connected

Gunk 0 V nex
Gunk n if we inter

k is known as a strict fundamental domain if Gunk n t nek not just interior That means that k contains
exactly one point from each orbit

1.8 Example

I Ii Ii DoAIR

Then the closed interval coil is a strict fundamental domain andso is any interval et.tt's t ter The
interval It tta is a fundamental domain but is not strict

s t t
s t 2 t

Rem notation Sisa in salsaall

need to do a correctionhere






































































































































Recall simplex D is the convex hull of ntl points is called regular if any permutation of
vertices canbe realised by an isometry of X

Den a simplex ok E X for Ken is the convex hull of Ktl basis vectors in X It is k dimensional
A simplex is regular if all edges have thesame length Ok denotes the regular Euclidean k simplex

eg n 2 1 2 in

2 2 HI

t A
recall the halfspaces
are the connectedcomponents
in the complement ofthe

edges are same length hyperplane

1.9 Definition a convex polytope P e x is a convel compact intersection of a finite number of closed haif
spaces in X with nonempty interior

The link of a vertex v of P is link u Pn unit in 1 sphere centred at u sphere in Trx
This is a spherical in itdimensional polytope P is called simple if I ve P link u is a regular

110 Example n z A convex polytopein X is a convexpolygon and every convexpolygon is simple

arrows rep choice of half spaces

I T
remember polytope I simplex Below wehave
2 simplices in a and b but in Ic its
not a simplex 2 dim butnotconvex hallof 3points

n 3 PE 3

ng
klat lb

simple simple not simple Clink v isnotregular

these are solid shapes






































































































































111 Theorem toprove later Pe X a simple convex polytope with n iz Let Filice be the set
of codimension i faces of p Then each Fi lies in an tt ex
Suppose kit if fine 0 then Hi and Hj intersect at an angle Ii where mi 72ETL
set Mii l and mi o when Fine 0 and Si be reflection across Hi in Isom xn
let W be the groupgeneratedby si ieI Then

1 W has the following presentation W C si sis mis e vi jet

2 W is a discrete subgroup of IsomXn

3 P is a strict fundamental domain for wax and the action induces a tessellation of X by
copies of P

9
tiling

112 Remark setting mi I gives Sisi e si e vie I

1.13 Definition a group w is a geometric reflection group if it is Dem Do or a group from Tnm 1.11
W is spherical if Xin Euclidean if X E and Hyperbolic if Xn HI

114 Remark geometric reflection groups are our first examples of Coxeter groups Coxeter classified all spherical
and Euclidean groups in 1930s Hyperbolic reflectiongroups are still notclassified

115 Examples Triangle groups

Hpg re 7L sit zepeaer I triangle p e X with angles Ip a r Then
we C si sa sa si si esse e sisa sass sss r e

when X the angles of a triangle add upto 1800 trad

possible triples 2,2 rt 12.3.31 2.3.41 and 2 3.5

Tlr
eg 2,2 r

p

set

six Is






































































































































When X 2 then Ip It It eg p a r 3 Then

Example 1.16 symmetric groups

for n z and P a regular Euclidean simplex Dn e ten Label the vertices with the set l htt then
Isom Dn Snt the symmetric group on ntt letters

Embed D E IE sit vertices lie on t and then puff out Dn to lie on then we get a
tessellation of by the boundary 2D

eg n z t I

t t t t t

Take barycentric subdivision of 2D andletting P bemaximal inthissubdivision then we get a presentation

sisi emsn.fsn.sn

Let Si i it gives sht as permutation group

Example 1.17 Tiling of E by n cubes

s 3s
ssee sasinsaf

sa f
P sp see sie
sup

s si es Is






































































































































2 Defining Abstract reflection groups

2 1 Definition Tits 1950s

let s silica I finite indexingset A Coxeter matrix is a symmetricmatrix Is xs M mii i jet
such that the followinghold

Mii I tie I
mi m E 2,34 0 ti j

The Coxeter group w is the group

w s 1 Csis mii e vi je I

and the pair Wis is called a Coxeter system

2 2 Remark
a note mii l si e f si es Also sisi mi can be rewrittenas sis sis Esisi

Tif mi

Geometric reflection groups are coxeter groups but notall Coxeter groups are geometric reflection groups

A Coxeter group w can correspond to multiple Coxeter systems
see isomorphism problem for coxeter groups
one can define wis with 1st infinite we restrict ourselves to finite generating sets in this course

Next two coronaries are of tit's representation to come later

2 3 corollary if was is a coxeter system then the elements of s are
pairwise distinct and involutions

if was is a coxeter system then ti j sis hasorder mi in W

Let G be a group with generating set 5 He

2 4 Definition The Cayleygraph of G wit S Cays G is the graph with vertex set G It hasthe
directed edge set gigs gea se s s e and undirected edge set g.gs gear ses.si e
All edges are labelled by corresponding ses

g

go
geEx G Cs g Then Cayg Cs

g y
e

In our examples s is always a set of involutions elementsthatsquaretoidentity so all edges in cays G
will be undirected really anedgein bothdirections

2 5 Remark since S generates a Cayscat is connected from corollary 2.3 we also know for
Wis a Coxeter system Caysw is simple no loops at vertex andno double edges






































































































































2.6 Lemma G acts on cays a via multiplication on the left This action preserves edge labels

under this action if see then gsg is the unique group element which flips the
edge g gs

g
gs

gig
s
gigs

2 7 Example Dam sises sesis
si es

eg Do s si sas ses sisz

sin as

si es
E

e

Do
s
c s

I é s s s sis

2 8 Remark In case of geometric reflection groups cays w is dual to the tessellation of X by the
polytope P

2 9 Examples

Triangle group 33,3 s s 52,53
sises sis s
s

t

ggg

sis sis

s nssee s.si
see sie si es

s
si es t's sa oe

I
0110212022

210 Definition given agroup G with generating set s of involutions an element is a product of generators so sn sits
and a word is a finite sequenceof generators si snl care particularly about the order si es Thewordlengt
of geG wa s is es gl min next I g s sn sies and we set este o if escg n I and g si sn
then the sequence si isnt is called a reduced wordfor g generators have length 1 by construction

note it dependson choice of generating set

eg in Do sises is anelement s sis sessa si Seis and se Sissel are reduced words for this element






































































































































211Definition The word metric on G is givenby ds gin es g h for g hea This extends to a pathmetric
on cays a s Each edge is given length 1 The distancebetween twoverticesis theshortest path between them

212 Example dsle.gl esle g esg k and if s sk is a reduced word for g then we get a
path of length k from e to g in cays a

E I Is Isis and this pathhas minimal length

213 Definition A pre reflection system for a group G is a pair X R such that

x is a connected simple graph
Gax by graph automorphisms
R is a subset of a and
a every r er is an involution
b r is closedunder conjugation Agfa reR grg ER
4 R generates G
d V Ev w e E X 7 re R which flips v w lie interchanges v and w

e each re r flips at least one edge

g em

For r er let Hr midpoints of edges flipped by r

IN Do si set sizes sis e s s s

Take X cays w
R s se sises sas s

sis

y

system for Webb

g

s's's

e

weDo s se Is se sis se

x cays w
R wsiw I si es wew

si si E s sis siss
x R is a prereflection
system for DD

ses
a

sensesins






































































































































215 Lemma if xia is a prereflection system for a then a acts transitively on Vix

proof X is connected so t path between any two vertices v and w u vo.vn ve w Let ri bethe unique
involution which flips vivital Then

Effort
w

p n
216 Lemma let Wis be a Coxeter system and R us w ses went Then Cay w Rl is a

proof From Rem 2.5 Cays w is always a connected simple graph Also wsw t wsw wsw t.ws wt wwte
t wsw ER so they're involutions Moreover wsw t is the unique reflection which flips the edge w.wsbecaystw

217Definition Let XR be a prereflection system for a Then X R is a reflection system if in addition it satisfies
f for each reR X1hr has exactly two components

3 Combinatorics of Coxeter Groups
win waw wi

I w s wIn this section we will prove

31 Theorem let w be a group generated bya sets of distinct involutions Then the following are equivalent
i Wis is a Coxeter system

21 Let X cays w R wsw Ises wew Then X R is a reflection system
n n
14 Wis satisfies the exchange condition

3 2 Definition Thepair wist issaid to satisfy the deletion condition if the following holds
D if we si ask is a word in s with es s sk ck then I indices is
such that s sk s si si sk where 5 means delete the letter si candelete 2

33 Definition Thepair wist issaid to satisfy the exchange condition if the following holds
E if Csi sk is a reduced word then for any ses either es ss sic ka or

w s sic ssi si sic for ie i k iemakesanotherreducedword

if this doesnthappen then e ss sk K l

proof of Thm3.1

3 14 deletion exchange suppose Csi sk for we s sic and soes Then

esCsos sic escrow

eesisolteslas
htt

If kit then we're done so suppose es so state kt for contradiction's sake By D I indices Osijek
such that sow so si 5 sk since our original word is set is reduced we must have i o
otherwise multiplying on the left by sogives E so sow so 5 sic s si sk multiplyingonthe

leftbyso gives we sosi sic Hence was satisfies the exchange condition

We now prove some lemmas needed for 1 2 3 First a discussion






































































































































Discussion let w be generated by S as in Thm3.1 Then I a bijection

wordsin s t c pathsin cayley graphof w genbys
that start at the identity

Ex 2.12 qt Is si su

Let R wsw wew ses From lemma 2.6 3 re R which flips each edge

s s i s s

givenby rj s s s i s for example ri si re sises r sises sis

so we get a reflection sequence ri era for a word 1st sk

If Hr midpoint v w r flips v w then we say sis ask crosses Hr if the associated pathin

caylw contains an edge flippedby r So si sk crosses Hr tire

Csi sic has associated path e s sis sis s si sk The edge E3
is sis s sass and is flipped by left acting by re siszsss.si

sisassses sisa s.sesss.si s sass s sass sis
This element r isunique similarly every Ei is uniquely flipped by ri

34 Lemma let w s R be as above and is sk a word in s with associated reflection sequence

Cri re such that Cris re sit ri r for some leis s k Then in W

S sic si si si sk

proof let rerier and up si sp Then in cays w we have

Applying thereflection r to the path wi wi t to get a path from wi n to w

ideais tobuildapaththatgets

youtotherightelement If it
E i i i

ii fi
g

in ii Ii crosses overtwice thenwecan

just reflect it andignoresi
andsi

y
t I
i n

i
i s

w j I 1 ngw

or or

The action of WAcaysw preserves edge labels so weget a new path to wk

Isis sit sit s i site sa get rid of si ands edge

as required






































































































































35 Lemma with W S R as above then foreach reR causw Ihr has at most two connected components

proof r wsw for some wew ses
Claim w tis Husni Hr

sketch if s flips edge s then wsu flips gigs w

so w Hs E Hwsw
otherside comes fromthe factthat the actionof w on edges is transitive

Then whoa we can prove the lemma for Hs because wa cays w by isometries First we show for all
v e vecayswi W then either v orsu is in the same component of caysiwi Ihs as e

Let Isis ish be a reduced word for u n we geta path in caysw from e to u with associated reflection
sequence in re if stri for any i then e and u are in the same component of cays w Hs

to see this notice that if s ri for any i then s does not reflect an edge ofthepath associatedtou

by uniqueness of the ri each ri is the only element to flip edgeit so the path associated to u canno
crossHs I e youstart ate and end at u and this path is contained in one component of cayslullhs

Now suppose s ri for some i Then by lemma 3.4 since is sect is reduced r s ties then the

word s.si sk for su has a reflection sequence Is ri ru where r sri's

Remember r si re Sissi is sisasssasi we're justadding a new first term

Then ri s s and r t s for it l So we have s r n't has exactly two instances of s Hence

we can apply lemma 3x and delete to get a word for su which corresponds to a path from e to su not
crossing Hs Hence e and su are in the same component

n

there exist u ve in the same component as e s t su andsve are in
2 other components components are nonempty so can construct such si anduz

Now every pathfrom su to sue has to cross its everypath from
V to ve crosses sits Hs E

let his bea coxetersystem For any word si sk I let her s be the number of times the
corresponding path crosses Hr in caysw

36 Lemma itfor any word Csi sit with w si sic then for any rep 1 I ti depends

only on weW not the word representation but the actual element
ii t a group homomorphism W is sym R x ti was Ow sit owcr.es wru l ca e

where s is anywordrepresenting w

so we can say thatif her s oddfor one
word seet an element t then her El is
also odd for anyother word q for t






































































































































proof first we'll define 0 for words then show it extends to a group homomorphism and this
will show it as well as in

For s e s let Ose sym Rx tis be given by Oser e srs c 1 e where Srs
s

o r s

we can check that Os is a bijection sinceOso0s id Rx Eti any involution is a bijection

We can extend this definition to words If I si sie is a word then we define losesymcrxst.is
to be 0s Is o ods

and can show inductively that
g er e sa sirs sk f 1 e

Let's check that this definition induces a homomorphism W sym Rx I's we want to show that

if s is a word for Csis mis mi finite then Os is trivial i.e respects relations of W

i j Then I sis Os Osod id t ses v

i j Then I si si si s si si
Tijietters

offormwow1

Then telnet sigifessirsiq.j.gg
sisilmis r sis ere r

We also have to show that neris is even trek we'll deal with two cases Noticethat
C si si Ew is a subgroup isomorphic to Dem where m Imis not sure why not justmis

If rel sits then s sis has a path that doesnot cross Hr If it did then
r would flip some edge But remember howwe defined r

if we have an edge say sisjs sisjsis

Then the unique r flipping it is si sjs sjs is s because sisjsisjsisj.sicsisjsi
sisjsisjsisjsisisjsi
sisjsisj

But of course this is made of si andsj But relc si sj Therefore nor s o

In the case that re Csis then we know that r is some sis sis si sisi
I'm not actually sure

If r e c si si then neris which is even

If s is a word for Isis m we know that if say re sis Msi wiogthen Isis mustappear in

the word remember r isthe uniqueedge thatflips
sis si osisjsis
sis sis sissi






































































































































Butthen aitually if Isis m appears inthe word then since s is a wordfor Isis mis we must

have that m nmij

We know that if re si si then it has tobe of the form sis si sj sis si sis Msi wiog
could start with j Anyway then

re Wsi w for some we csi.si And in particular

edge flipping w wsi

what happens if w is a subword starting s

Idea you have your Cayleygraph and youhave a closed path in the cayley graph corresponding to the word

s for Csismil which is just e

j
possibly repetition

A word s for Csismis e corresponds toany closed path in cays W starting and endingat e we know
that the path is arbitrary and so caninvolve some su's with Kt is we know that if you have
some r e si si flipping an edge of thispath then since Ris a reflection system r flipsthisedge
and another edge e ofthe cayley graph






































































































































Proof of theorem 3.1 1 12 A Coxeter system Wis gives a reflection system where X caysw
and R wsw weW se s

By lemma 2.16 we already knowthat XR is a prereflection system for w so we onlyneed toshowthat
condition f holds H foreach rer xian hasexactly twocomponents

By lemma 3.5 we know that XlHr has atmost two components for each reR so the claimfollows if we
can show that Hr separates x I then it must have more than one component Whoa similarly tobefore
we only need to show this for Hs we saw that if r wsw l then Hr w Hsl and since
WAX via isometries then if Hs separates the space then so does Hr

so let res By lemma 3.6 since her s nesist 1 have Ets for any path from e to s in X
crosses tis an odd numberoftimes This is because C1

w in's is independent ofanychoice
of word w for s andso we can justpick l i

m e fi r's i s's i i so an odd

number of times In particular it must cross tis at least once it follows that e and s lie then
in separate components of Xlhr

any path from e to s crosses Hr anodd number oftimes so every path e s is split by Hr

proof of them 3.1 21 13 says that if XR is a reflection system then it satisfies the deletioncondition

Recall the deletion condition says that if a word is not reduced you can delete 2 generators from its
word and stillgetthe same element

i
3.4 Lemma let w.s.ir be as above and is sk a word in s with associated reflection sequence

Cri re such that Cri no sit ri r to some leis s k Then in w
s sic s si si si

so if we can show that s is a reducedword es ri andrj are pairwise distinct then the claim will follow

so if I is not reduced then I i j sit rier and then lemma3 x s sk s si 5 sk

I follows from Lemma 3.4 we're interested in the converse

p componentswhosehyperplanesseparate
I let we s sk and Rle w re R e and w are in distinct components of X1hr eandw

Then for re Rle wi ay path from e to w must cross Hr at least once Hence r mustbe in the reflection

sequence for w i.e re ri for ie ie k

Any path including the reduced word path from e to w must cross Hr for all re Rcew And so

everyrerlein must be in the reflection sequence for the reduced wordfor w Hence

e w 7 IRCeswll

But we assumed that X R is a reflection system so XlHr has two components for every ri in the
reflection sequence for we s sk of which there are k distinct reflectionsby assumption ofcourse
remember that ri live in R by construction they are of the form wsiw for w s si i






































































































































Now the path we s sk crosses Hr for i i k and particular I think it does so only once
because the ri are pairwise distinct Yup I think that's correct And therefore e and w must lie in
separate components of Xihr Viel k Hence I Rleiw 2k

Therefore k e e w s treewi I s K ecw k so that Isis ish is a reduced word for w

All that is left nowis to prove that 4 a i.e that W satisfying the exchange condition Wis is a
Coxeter system To do so we state and prove Tits solution to the word problem This will take a littlewhile
so hold on to your horses

3.7 Definition Let w be generated by a set of distinct involutions S and s tes such that the orderof
st mst is finite A braid move on a word in s swaps a subword sit sit of length Mst
with a subword tis t.si of length mst

3.8 Remark since stint e and s t e carrying outa braid move does not change the group element

which a word represents stimst e stst at t's t s t t's tsts ts

Braid move comes from relations in the braidgroup which are alternating relations of length 2 and3

39 Example question do they have tobe rightnextto eachother in theword Iguessno

In Do C si sa si si sisal e braid moves are givenby swapping si si si e Casa si sa

In Da C si sa si si e there are no braid moves

suppose St R is a presentation for a group G The word problem for SIR is thefollowing

Given s a word in sus is there an algorithm for determining if the element it represents in G
is the identity

3 10Theorem Tits

suppose W is a group generated by a set s of distinct involutions and Wis satisfies E Then

1 a word si sk is reduced it cannot be shortened by a sequence of
i deleting a subword s.si ses or

ii a braid move

2 Two reduced words in s represent the same element weW e they are relatedby a finite sequence
of braid moves

si si suis se se is a subword but Cs s not






































































































































proof proofof 2

suppose we havereduced words s s set and I ti steal both representing weW
we'll do a proof by induction on k ecw

Base if kit then I s I for some generator ses and we're done

Ind hyp assume true for elements w such that ecw e k 1

It s ties then su is represented by sa sat and tonite note that s and I are actually reduce
If Sw is not reduced then t a repo can a with je k 1 andthen s ai aj will be
a word for ssw w with length jtick its k a contradiction since s sk is reduced so
see sic is a reduced word for sw and so is er tk By inductive hyp we can transform

one into the other by braidmoves and hence we aredone

But what if s ti In that case let sits and test
claim mst is finite and I a word I Cui uk representing w starting with sit sit
of length mst

we me
Given the claim let a be such that a ma via braid move on the initial subword Then

seems Fame
where the first and last arrows are from the case where words start with the same letter

proofof claim since w can start with the letter s or t el tw ecw I using reducedword
stuff like before and by El this means that sisz sk t s si se for some ie ie k
remember exchange conditionsays that tacking on a generator to the front either increases the

length of the word by1 or we can exchange the generator forone in theword

okay so si se ts si sic Now s s tt so we cannot have that i 1 Hence
W is represented by a word starting with it s

For q iz let sq be c sits the length q alternating wordwith last letter s we will show

by induction on q that for any qe mst we can find a reduced word for w beginning with

Base case q i done we ssa sic and s so sk is reduced

iii iii
Ind hyp we have a reduced word I representing w that begins with sa

Let s s if a t even i.e sa starts in t






































































































































Then es stw c esta remember we have reduced words s so sic and t ta tk for w
so this is just the regardless of oddeven Hence by E we can find another reduced word for w by
exchanging a letter u of s for an s at the start

suppose u in se i c s i e u is one of the first q i letters of s Then it follows there are
two distinct reduced words representing sq usingonly letters s and t I thinkthis followsby playing the

game above with word sq Perhaps instead youjustget that because no other parts of w changesand
sa i C s.tl is reduced thenthis otherwordfor sa must alsobe reduced However q i mst by

hypothesis and in Was.es the only braid relation is qty Etf remember Cst mst e

So any reduced expression of less than length m is unique by observing paths in caygs.es was.es

So we cannot have u in se After applying E like we said above we get a reduced word for W
starting with s sa Sq

Therefore we have completed the induction on qemst hencesetting q mst gives a if mst is odd or a
if Mst is even This completes theproof of 21

I is trivial Braid movesdontaffect the element the word represents

proof of l

I if a word is reduced it cannotbe shortened at all Periopt

I suppose s Csi sk cannot be shortened by a sequence of deleting s.si pairs and braidmoves We showby
induction on k that s is reduced

Base K I so let k t
Ind hyp suppose the v words of length K l

Mstandardargument and east ht
we'll showthen it canbeshortenedby
afinitesequenieofBraidmoves as deletion

Then I sa set is reduced for s w suppose s is not reduled Let we s sk and w sa sk

Then es s wi es w e k i
t esta isnot reduced so estwick

By E w s sa 5 sk and s sasa si ist has length K l andso is reamed By
part121 of the Theorem s and s are both reduced words for w sa sk of length is 1 and
therefore byinduction s and s are related by a finite sequence ofBraidmoves

Hence I can be transformed into a word starting with s si by a finite sequence ofBraid moves so
S can be shortened bya finite sequence of deleting is s pairs and Braidmoves






































































































































Proof of Theorem 3.1 14 i the exchange condition Wis is a Coxetersystem

Suppose w is a groupgenerated by a distinct set of involutions s silica Assume e holds we want toshow

that Wis is a coxeter system

Let mij be theorderof sis in W Define a coxeter system usingthematrix mj w s generators
s s'ilies

Then 0 W w si si is a surjective homomorphism by the universal property ofpresentationof W

We want to show that 4 is injective W'I w so Wis is a coxeter system

Suppose that we kerco and wite Then w is representedby a reduced word si sit in s so

0 w is representedby si sk in s since btw e Csi sic cannot be reduced By Tit's thm
Csi sk can be shortened by a finite sequence of Braid move and deleting sis subwords But then
Csi si is not reduced I
O is injective and hence Wis is a coxeter system






































































































































4 Tit's representation

Than Tit's Let I be a finite indexing set and let s silies and let M misti jet be a coxetermatrix

Then there's a faithful representation p W General where we est sis mis e where n 1st III and
such that
Hi pls o is a linear involution with fixed point set a hyperplane
for all i j the product oio has order mi

The homomorphism p W Glen.IR is sometimes known as the canoniialrepresentation

NB Oi EGln IR wont usually be an orthonormal reflection

Construction of the tits representation let cw.si be as above wiog I is n let ve n dimensional vectorspace
with basis er en Define a symmetric bilinear form B on V as follows

Beene cos 1mi if mi finite
I if mi infinite

Note Bleieil I and Beene so for i j

Define oi v v by situ v 2Bleivle

Oi is a linearmap

s likereflectingine

First properties

oi ceil ei

Fixedpoints of o Fixcoi ve v Blein o Hi hyperplane aim n n
o preserves the bilinearform Bloise oicerll Bee er

Blaise oiler Ble 2B eine ei ex 2Bleiserlei

Blej er t Blej 2B ei.ee
eiltB12Bleieilei er BI 2Bleiseisei 213ei exlei

form
Blejeat tacos imine 101 1mi

t 210s mi cos 1min 4cos 1mi cos mix Ble i ei

gin

Bleiler 410s Ei cosEir 4cos Ii cosEmin Blej er

oi v 2Bleisulei involution

u 2Bleisulei 213 ei v 2Bleisleilei
v 2Bei.ve 2Bleisulei 4BleisulBleiseilei
v 4Bleinsei t 413 eivlei u














































































































Proposition 4.2 o o has order mi for all i jet

Corollary 4.3 The map si moi extends to a homomorphism p W General

proof of 4 z o if i i we're done Ianinvolution
Assume it Let Vi spancei e Then oil vi Vij o visit so consider the restriction of air to Vij

I cost micase a mi finite The matrix repn of Blvi wit Leiest fgo I has det o and tr o
and so is positive definite so after a change
of basis we get the standard inner product onIR

Hinvi
Hinvi

changebasis angle between ei and eein
e a ei cos 1mi cos it Imi

w

d

ei angle It 1mi

so oilvi the orthonormal reflection in Hi and similarly o afterchange of basis
upshot Gio lui is a rotation byangle mi of order mi on Vi

Note that Vi we v Blunt to t vevis V Vijtovisit direct since Blvi is tve def nondegenerate
But oio lui t Id hence oioi has order mi on v as required

summary of ideaofproof canthink abouthow oi and o acton ei and ej onthe orthog complement of Leise
o and o act trivially And we canrepresent oio as a rotation with angleEj which hasorder mis
case b mi infinite matrix repn of Blvi wit Ceie ti it is positive semidefinite but not definite
calculate oio ei oil eitze eitzleite oioitcei ei t zkleite

which clearly has infinite order so we're done

Corollary 4.4 let wis be a coxeter system Then elements of S are pairwise distinct

proof o i Cuse oio has order mi or noticethey do different thingsto ei say Differentlinearmaps
They're distinct in the representation so distinct preimages

corollary 4 5 Sisi has order mi in W

proof Immediate as oio has order mij

Geometry when my a

matrix repn is it we have wall Blvi Leite N Taking thequotientby nullspace

Blvi induces a toe def form on Vii iv I dimensional

Notation Wi sis EW Wij Do I'll recoveraction frombefore



The matrix representation of B when restricted to Vij isgivenby lil in basis ei e Hence B
induces a tve definite form on BIN which is one dimensional

let wi si si I Do Then wi viap has thefollowing properties

1 Wij actsfaithfully onVij
faithful if g n n t nex theng e

oi o fix N pointwise

Note Hi avi N Hi avi N so not a very fruitful viewpoint

of vep the main hill guerin minvii minus

Idea consider dual vector space Vij Elvis IR we have a dual representationjj.j.j fiW Y w e u 9 w v1 where wewig Ye Vij ve Vij

si si EW
This is faithful as it's dual is faithful

want w to give us a al map on Vij i.e one a where we act on Vit andget amap vij IR

Vij spanceiseil D wi bythe above representation Wij Vij Iw e lol 41Wul whichgives another
map w Ye Vit

Denoteby Hit 414 ei o and let Hj
I

g g

preserves Z

calculating p si

pig gyp
wit obviousbasis notsure sign

sin
where this

ftp.t
Isis

Let E Zt

E has standard action of Da acting on it intersection pointsoforangeline
withgreenbluelinearesupposed
toneequidistant



Have Pt Wi allVit p twice u 4 pew
1 ul

for si si o so sit si let 4 v Bierut Then

p si cello 4 pls u yo ai v 4 v 2Bleisviei
4 u 24 ei filo

with theobvious basis Yi ej

p si bi lol Gifu 2Éteilailv
Gilul to

gives us I

p si Yj u 9 u 29 lei 4 v

ej ul t zeilul i notsure where I am goingwrong

pics Gi v1 pilot 26 ej g u lilYi t 26fr

1p sj 4 v1 girl 29154,14
Yifu 24 V

i4jlv

E
Faithfulness of Tit's representation Dual representation

pt w alert given by pic 11141 9 Pew1 Iv

Goal p faithful e pistoo Is
Define Yi Ev by lilv1 Bleier Then sit p si is suitsisintzat 4 y Zeleilli remember o an involution so pinit plus

Remember the hyperplane Hit GEV I elei o anddefine the open halfspace Ci 4ft I 9 ei 0
and c f Ci closure E chamber associated to representation Finally denote Ci cinci

Recall oil v v 2Bleivlei

at a lui Girl 291 i gift
4101 2BLei useceil
et u 2Bleisusei
p o v71

6 o lol as required



Example mi finite span Yi 4 It with standard innerproduct
eg it mij 3

Hit Hit

s c si

sin s hi

sis c

non on

iii
ii

ceci
sic

sista

suitsisintz

This reads a littlefunny Basically
finite on Kfi Hit thetwo elements si ands fix thespare pointwise
infinite on It Hit s ands acttrivially preserves thespare

Definition Let G be a group actingon a set It Cc it is prefundamental for a if agear geneto g ieG

Ex Ci is a prefundamental for w si acting on V

Cijis prefundamental for wig

This all feels intuitive but its important to know whatsgoingon Ci 4ft Glei o For si anting
on Ci Isi 4ceil 4 plsDei 9 oilei 91ei eceilco andsince si e t we wi
were to w e so ci is prefundamental for wi

Similar logic shows the second statement

Theorem 4.6 Tits The data WS cil satisfies property P for any we w ie I either we c ci or
we c sici Moreover in secondcase lysin es w 1

Corollary 4.7 Esa C is prefundamental for w p is faithful



key we alreadyhave that Wi i it ci.ci satisfies property P from our pittures

strategy Pn p true for all wwith lew n

On twew with ecw n it I ne wi sit we cuci and ecu w ecw e u
Trtsi s

proof oftheorem Po and Qo hold want toshow a Pnand an Pal and b tent andOn anti

al suppose e w htt and si es Then we s w for some si es ecw n

if i j apply on to w must have w c c c sin c e si ci and ecswl n v

If W'c c siCi instead then elsini estwi i n ecw n t E

if it apply on to w Then t me wi s.tw c e uci and ecu w ecw e'cut Twopossibilities
i sju Ci c Ci w Ceci or
lil s uci c sici w c c siCi

Remember u is a wordin siandsj and definitely Cijcsi andcc will have sjuci c Ci or sci because
Ci c ci and Ci and sici are separated only bythe halfspare Hi

Now if sjfusi cci s wie c si uci cc t we cci similarly forsecondpossibility

word length for Cii e sin e siswi s etsis u ecu w
E e sin i t ecw't elul e ecw I

3 4 Imust beequal cantdifferbymorethann

if u startswith si then e sjule flu and we getthat e elw 2 ela
if u start with si then e sin elm ti and so ecw ecw i

so in totalwehave elsin e eld l But e sin cannotdifferfromecwby more thani so e sin ecw l

b suppose elul net i j If we Ccij then done ut Assume not wiog WC Kci Apply Priti
we csici and elsin ecw l Apply On to sin so I ve wi sit since vci and
e sin e'lol ecu sin Then we c sirci and ecw i t e sin i t e v ecu sin

e sin te siv w s ecw

Both of these then mustbe equalities sothat e tint w ecw e siu

Change in notation replace c with co I with C to agree with notation in literature

4.9 Definition the Tits cone of wis is YewWC CV

410 Example

1 Dan n finite then V E and the tits cone is all of IE

V Vij Tits cone is ye vi ye ye go
remembertaking closure

and the interior is the open half space bounded by Z and containing z

can see this from pictures



5 Finite Coxeter Groups

5.1 Definition let wis be a coxeter system Then Wis is reducible if se s us such that mi

t sies s es i.e sis sisi is a rel in w r si es s es

Wis is irreducible if its not reducible

52 Remark if Wis reducible then we s xis

But w can be irreducible and still split as a product eg Decks DaxCa

5 3 Theorem Let wis be irreducible and 1st n Then the following are equivalent
it w is a geometric reflection group on s generated by s silies and the set of reflections in
codimension are faces tibia of a simplex in sn t sit ti and t meet at an angle 1mi

ii B is positive definite

iii w is finite

proof in Davis section 6 uses Thm 1.11

As anaside we have similar theorems for Euclidean B positive semidefinite of corank 1 and Hyperbolic

If W is a finite coxeter group with 1st n then rt a ten and C formerly it is a closed Euclidean

simplicial cone with boundary given by Hyperplanes

pcoisprefundamental for w
Recall corollary 4.7 Esa which says wow then if wconco to then wee This implies if u eco
then theorbit woe has Iwl points they all have tobe different

5 4 Definition Let Wis be finite The Coxeter polytope for w is the convex hullofthe worbiton
ut of a point see co

These are convex euclidean polytopes but are notin general regular
u wi n

g

at a at5 5 Example Do w wa f i'wconcoto

É
sell

s.at sett

y
siren

sises

Rem the t skeleton is isomorphic as a nonmetric graph to cays w



Forms B associated to irreducible coxeter systems canbe classified bygraphs This lead to Coxeter's classification of
finite coxeter groups

5 6 Definition
A Coxeter Dynkin diagram e is a simple labelled graph with finite vertex set Vit s sissies and

edge labels m
s where mi 3 or mi o

5.7 Lemma There is a l i correspondence between coxeter system Wis and CoxeterDynkin diagrams e

proof we give a bijection

Wis Coxeter system C T coxeter diagram

s c s vet

mi mi ez e s no edge between si s

mi 7.3 o c s g
mis s

58 Notation we omit edge labels mi 3 for rest of the course i.e

s s is just represented by si s

Under the above bijection denote image of Tby wit reel or wet s

59 Remark many mathematicians use a different convention where s s a mi a

5.10 Theorem Coxeter 1930s classification offinite Coxeter groups

Wis gives rise to a finite Coxetergroup w a Wis wit well for T a disjoint union of
a finite number of the following graphs

An not

n vertices

Dn n 4

I m m m is

Fu

Hs s

Hy s



Eo

Et

Es

5.11 Remark 5 5 UT precisely when wet vets is reducible

5.12 Examples
m s wear
m y weBil

s
n
sa m is weIzemiDam we s se Isi si e essom es

WCT I Sn iAn in it d E n t vertices he

one
check indices

w An i si sn I sic e Isis til e

Given a Coxeter diagram T let s vet and let It be the full subgraph of T spanned bya subset
of the vertices Tes

Full subgraph if ti te et and in T t an edge ti ta thenin et wehave the same labelled edge
induced subgraph

Then Weei T is a coxeter system

eg I g g
T sits then Te g

5 13 Definition if you take Wis a Coxeter system TEs then the parabolic subgroup wt of w is
Wt T If T O then fix we e the trivial group

514 Lemma if Wis is a coxeter system and we witil T as defined above forsome subset Tes
then Witt I wt

proof if 1st n and v be an n dimensional vector space with basis es ses Then let p W Gier be
the Tits representation with symmetric bilinear form B Let Gt be the subgroup of accu which
stabilizes as a subspace v span et tet not elementwise

Now Witt T has it's own tits representation of the form B with vector space v ee Ite t
Then V v e't et is a vector space inclusion

p thinn of matrix

By naturality ofthe Tits representation ie Blt BT we get a commutative diagram

with a P aclu4a
universalproperty
ofagroup

restricting

Or to ve ve



O f to vi rpresentation

wi
4 u

Gt

ptis faithful pother
restrictionsarejustintentions

Top arrow injectionby Cor4.7 left arrow is an injection which gives weet we as required

5.15 Definition if a parabolic subgroup is finite we call it a sphericalsubgroup

516 Corollary Combining theorem 5.10 with lemma 5.14 we see that all spherical subgroups can be obtained

by observing 5 for was

517 Example 3.3.31 triangle group

Coxeter graph s sit ul

g ou

Wis has spherical subgroups

Wo
Ws Wt Wu type A

wesits wet.us was.us of type A

518Theorem Wis Coxeter system Then
a West is also a coxeter system ties
b for all T es we we etcw escort andany reduced wordfor w in s s se satisfies sie t ti
let if T T es then winner went and c wi wi went
a The bijection t we subsets Test parabolic subgroups ofW preserves thepartial ordering on bothsets
given by inclusion

519 Lemma For Wis a Coxeter system we w then I subset scales such that given any reduced

word is stat representing w sew si sk

ie Scw depends only on the element w and not itswordrepresentation

proof by contradiction het w be a minimal length counterexample i e w s sic it tie such that si ties and
si sk t ti ite Then we sin where so sk is alsoreduced for v By the exchange condition
es saw a ecw so y i sit we sit ti tk so v satisfies Scv c ti tic

since escu c escort it follows that sa ask scut c ti tk bytheassumptionof a minimal
length lounterexample

By same argument on w Sk si we get set s t c ti ties so si sic E Iti tk

By symmetry of argument tis ties E si sk so si sk tie steel which is a contradiction

by assumption of a minimal length counterexample



Proof of Theorem 5.18
lat follows from Lemma 5.14 we tweet

deletion condition
b use lemma 5.19 If we wt then sew CT so by lemma it follows that if Isi sk is a reduced

word for w then each si et so lscw etcw

lol clearly went c wi nut For reverse inclusion win wi c went then by lemma s.la if
we win win then sews c t and sew at so seal C int saw is unique and so we went

The second part c wi wi w ut is anexercise

Id Suffices to show if T at then wt c we strict Thenfrom al we can take
went Win win we

so we e we Let set set By lemma 5.19 scs s so any reduced word representing s only
involves s which 4T so set wit but sew Wit c wt strict

520 Definition Given a cox system Wis let 5 TEs wt is spherical

521 Remark S depends on Wis but this is not reflected in the notation

6 The Basic construction

6.1 Definition An abstract simplicial complex is a possibly infinite set v the vertex set and a collection X

of finite subsets of u such that
in v1 EX V Ver
121 If Dex and o co then I ex

An element A ex is called an abstract simplex If O 50 then o is a face of o Define dim o 101 1
and D is a k simplex if aim o k

A o simplex is a single vertex us A 1 simplex we call an edge a pair v.ws

The k skeleton is x aitken4 and dim x max dim o o e x

If aim x co then wesay X is finite dimensional

The standard n simplex I is the convex hull of the standard basis er ent in IR

E.g in 1133

To an abstract simplicial complex we can associate a simplicial cell complex
n simplex o i s standard n simplex

o aface of a 1 glue accordingly



vivax X vertex setofX
OEV anabstractsimplex if C I X
o span a standardsimplex

Aimof this section define the basic construction U of wis a coxeter system

62 Definition if Wis a cox system and x a connected Hausdorff topological space a mirror
structure on X over s is a family Xs ses of closed nonempty subsets of X X is called a mirrored

space over s and Xs is the s mirror of X

6.3 Remark There is a more general definition for G any group and s indexing families of subgroups
see Davis 5.1

U Wix is obtained by gluing Iwl copies of X along mirrors

6.4 Definition if Wis coxsystem and X a mirrored space over s then the nerve of x is denoted

Nex and is an abstract simplicial complex with vertex sets and Tes is a simplex icf for t 0

6.5 Examples

111 X cone as I se s i.e star graph with valence 1st
Xs as

eg it s Es tout then
oh 00

and nerve u s

E FXt

121 x on with 1st htt Then we have
1st codimension one faces labelledby s

est x so

t

Xs Xt

y

Nerve
s

g

t

3 ph convex polytope in X when n 2 then
Fi ie faces if it then Fine 0 mis o
or meet at an angle betweenthem Imij mi iz
and set mii Then Wis isometry group
is the coxeter system with matrix mi Then

take x p and Xs Fi
Xs Xi

mirrored spaces are the halfplanes



03103

41 C E v the chamber closed intersection of half spaces from hyperplanes associated to Tits representation

wetake Hit dual hyperplane fixed by oi p si Then take X C Xs Chait

5 If w is finite rt em ten and C vein I e vie so ti Then n e co Coxeter

polytope is we the orbit Then take X Cn coxeter polytope and xs Xna h hyperplane

Eg Do remember we defined e Ble ceiHi c

and a a fut Glen o
anx vtr cu teil of by rte E

xs xs Ever v ei so

so C f Ci Ever cu e so ti

for the rest of this section Wis is a Cox system X mirrored space over s and I x ex sit a4Yests
Then define txex a subset scat ses nets don't confuse with Scw from section 5

6.6 Examples

In 6.511 then six 4 not ios ses

s n as
eg

In 6.5 12 then she o it x eX
y xuEeTHs ne ferTt sty s u

elts depending on where still us

6.7 Definition consider w as a

topological

th discrete topology and wxx with product topology Thenthe
basic construction is the topologicalspace with quotient topology

Ucw x Wtxf

where wise new x e x n and w w e Wsoc parabolic subgroup of W Wsoc sea
Write wise for equivalence class of win in UCWX

If a exs then sesext so wise ws.nl since w ins se Wsoc Hence ewes contains
at least wise and ws x

6.8 Definition write wx for us xx in McwX for any we w Then wx is called a
chamber of Ulin x The fundamental chamber is ex which we identify withX Hence wx and
wax are glued identified along Xs

wx Ewsxx under and wax ws xx under Andso by our previous statement wit twx and
Cws x EwsX andfor nets wit ursine since wins s eWsna so wx and wax are identified
along Xs



6.9 Lemma The Cayley graph
For X as in 6.5 i up to subdivision Ulwix is caysw

proof let net Then if not as Ises we have Wsoc Wo es so wix alwin's
iff w w'e es iff we w so wise wink otherwise ne sos ses say a as for

some ses Then wsoc was east since sis an involution Hence win win iff w'wie estiffw w or w us I e wise wised Cwsx

Therefore in UCWix we glue wx and wsx along Xs as and these are all the givings
If we label the star points of wx by w then this gives the Cayleygraph cays w and the
edges are subdivided by themes as and mirror labels a edge labels in caysw

Eg p the 33,3 triangle group and x as in 6sci then

00 i 00

I e X It of stx

a
tx

sax
g

guxu ox

ux susxusux

ousx

6.10 Definition For x the mirrored space in example 6s ca i e x a simplex with codimension 1
faces Ds I ses Then Ucwx is called the Coxeter complex

612 Example Coxeter complex for 3.3.31 triangle group

If a ex shxt then Wsca sit I Do so t wew wt is glued to wX trivially wax wax

wstx west and wstsx at ne x shxt

Get picture UCWX a tesselation of IE by triangles

six
stsx

x

xs xt s
x tax

xu
at

i
atx

uesxgluee.g x to ax along
Xu



611 Remark If W is an irreducible finite coxeter group then Coxeter complex can be identified with
the tesselation of the sphere by spherical simplices induced by w
nonexaminable

If W is affine then I an affine subspace E cu given by slicing across the interior ofthe tits cone
Then w acts on E byisometries and coxetercomplex tesselation of ten givenby intersecting E with
theinterior of the tits cone

613 Lemma MCWX is a connected topological space

Pf U Wix has a quotient topology was only subsets that are both open and closed are 0and Ucw.X
Suppose A E UCWx is open closed resp Then by den of quotient topology A is open iff Anwx
is open twew

Let Ato and assume that A is both open and closed Since x is connected Anwx wx or 0
Tosee this consider that A the complement of A isalso open andclosed If A eux strict so Anux 0
then this says wx can be written as a disjoint union of nonempty opensets Ava whichviolates the connectedness

So then considering this t weW A is a union of chambers i.e A VX 0 ve w e under our
assumption A 0 For rev ses I seeXs 0 from wayback so that ers x even v us sewson

Hence I an open neighbourhood inA at a intersecting usx Hence Anusx 0 andso user VsEV
But s w v w A new x so the only open and closed subsets of U Wix are 0
and 21Wix itself

6.14 Definition UWix is saidto be locally finite if f Cwik e Ucwx there is an open nnood

which meets only finitely many chambers

615 Examples

Caywis Ex 6.91 as new x is locallyfinite

The Coxeter complex definition 6.11 is not necessarily locally finite s
00

Example 6.12 is but wit s givenby e below is not e

To see this consider that if a exsnxu then wson I Do so a infinitely many chambers wx wecs.us
glued to ex at e x

es
Is wind I Do lookslike usususu

stx sususu

tx
x
s
sax

sowe glue usx to usux to usus x
ax along ax ex

i infinitely
manychambers and ux nsa n say then aintensest
asx usuxususx all ofthese lineinitely many inamberssaxsusxsusux



616 Lemma The following are equivalent
i UCWX is locally finite
12 Vicex Wsu is finite
131 V Tes such that We is infinite then Itt 0

Pf Clearly 12 a s Remember that sext ses nets so if cat holds then if axe nxt then
Te sext and weeWsoc wsoc infinite Then if 13 holds if xex then any set of mirrors Xs
Tes containing x musthave we finite In particular theset seat of all mirrors containing a will havewsoc finite

1 s suppose that 131 doesnothold Then I x ex with Wsoc infinite so in UCwill an infinite
number of chambers are identified at ee it so Ucwx by den is not locally finite so a doesnotholdif
13 does nothold

If 3 does nothold then IT is s.tw infinite unless all finite in which case lil automatically met with
Ee Xt 0 so I ne f Xt But sail se s nets so certainly wecan bulkup T if necessary to include
all of sin bydenof soil Tesla Then Tesla and we infinite wantinfinite

121 i for each Ew x e ulWix I an open neighbourhood U of Cwik only intersecting chambers wix
where w w ewsoc generally true But if z holds then Iwant car so U only intersects a

finite number of chambers so ucw.tl is locally finiteand i holds

Remark that w acts on UIwix by homeomorphisms via a left action on W X

i e wi wise wt w x

This clearly preserves the equivalence relation so we get an action on Ucwx

If win Crises then w v eWsoc so applying wi note that w w wir w Cw wir wi'vewon
so that Cwiw n Cwivix

Recall Definition 1.7 on strict fundamental domain for Gox

617 Lemma The fundamental chamber is a strict fundamental domain for waUcwx UlWX W IX

Moreover we have w ux wax which gives a transitive free action of w on the set of
chambers of Ucwx so t onlyelement sending wx to wx

is e since w has a free action
W s ulwix on apointseeUxs byass n exists
W i wx

is a bijection

6.18Lemma stabw Cwm w e w w w'w eWsoc justbyatn ofstab wWso w

By den stabwlewin ut w v win wing
vew Cvw n ew.nl

i ve w weww ew
byden ofaition

byafn of equivalence relation



Wis Whishaw Firstshow wwsonw e stab say a eWsoc Then iceXu and so consider v waw

Then cow waw win Cwu and but still Cw a waist so whish w s stab

Also by afn but stab w uwe went w stabwe wanna stab E WWsm w

6.19 Lemma The space U Wix is Hausdorff

proof let y Cw e newx Wy stabwl win Then for me an ex an open neighbourhood

Vy Wy la lyys
mirrorsare closed Un is openand
action ofw takesopen to open

is open in UIWix If y Cwi n is such that y y then we can choose us and an smallenough

to have Vynvy 0

Eg I g g then X

u
t

sx tx

If y C ts.at then Wy ts wt ts ts west
e s bydirect calculation using stylet lies inXt

x ii tx

620 Definition if G is a discrete group andY is a Hausdorff space then an action by homeomorphisms Gay
is properly discontinuous it
i la is Hausdorff
ii t yet ay stabaly is finite
hiii t yet I an open nnood Uy of y s t Gy Uy Uy stabilizesopennnood of y but not necessarily pointwise
and guynay 0 t getay

621 Lemma The w action on UCWix is properly discontinuous iff Wsoc are spherical finite tx ex

it.tl w x

proof G i and i are immediate by 6.18 6.19 For iii wog we'll show itfor Cena Then

liland ii Wix WIX
Vy Wso X1 s

and X byass is Hausdorf
and stabwlew.us wWsuw

from6.19 satisfies Wyly Vy and whyany 0 t we wlwson

1 1 part Iii of definition 6.20 says that stabw Cwa wWsoc w lemma 6.18 is finite Butif
this is finite then so is Wsu they're conjugate and so have the same cardinality



7 The Davis Complex

Recall 5 Tes Wi is spherical finite 20 wa e

7 0 Remark In this section abstract simplicial complexes do not have 0 simplex

7 1 Definition The nerve of Wis denoted Lewis is an abstract simplicial complex with vertex set s and
simplex set 5120 if we spherical then0 Pet Wp spherical so p e 5110.3

7 2 Examples

e Lewie Stell

5 959,531 and1 oo et

ummmm

2

y

s t the graph is not a finite typegraph
andso must generate sit.us an infinite

to ou Coxeter group

s a

s t
remember noedgebetween siandsi says2.5

fullinterior that sisji e this is A whichisoneof

9 our finite coxeter groups

u
3 o o

s t

wa boxer

4 s si w sa wi mi so u sits siesz
then let wi si is z

Wis w Sitwclwz.se

73 Definition Given anabstract simplicial complex X it's barycentric subdivision is the a s c X with vertex
set X and simplex set X E do ops o c dit toe sp i

e he a a c asan ac

ofthe next and we do
all possibilities

simplex set of X a b a g fis as
an be are
a b c



7 4 Definition The chamber k of Wis is the cone on the barycentric subdivision L of thenerve L Lewis
Let Ksc is be the star in L of the vertex s Ks U or

gg y
we label the cone point o

unionover all simplices op7 5 Examples from 7 c in the Barycentricsubdivision
ofthe nerve Lewis i
where s is a vertex in opWis L K

11
s t

soaks

Kt

sis sits isgo gits t
a re taking the cone fills it in to a z simplex

t.us t.ussin is.us

goit

3 is sits yes is ks spitsice yes

u aka

7 6 Remarks

k is connected and Hausdorff so ks is a mirror structure on K
K is the a s c Flag S I thinkof 5 as a poset with inclusion
0 is contained in no mirror we need some point six gYs for the basic constructiontonot be degenerate
In all our examples K is 1 dimensional but this is not always the case

78 Lemma a mirrored space X for Christ satisfies wson finite tx ex a next e Lewis

proof 7Let ti ties be a simplex in Nix Then I see xti so wet es ews is finite
so ti tics e 5 ti stiesis a simplex in Lewis
So NIX E Lewis

I let x ed Xt T is a simplex in Nex t is asimplex in Lewis Te 5 we Wsoc

is finite

for the reverse implitation really we want to say that Nex e was wson is finite Now
if x 4 YXs then we know that shi 0 and wa e so wsu is finite Now suppose that
x e Xs for some s Then in fact seesense Xs and so still is a simplex in Nix still is a
simplex in Lewis byassumption alll f 5 Wstm is finite

6.4 Definition if wis coxsystemandx amirrored space over s then the nerve of x is denotedrela nextand is an abstract simplicial complexwith vertex sets and Tes is asimplex ice fixe 0



79 Corollary K satisfies Nets Lewis so Wsoc is finite Vacek Ess

General idea you take twist and define the nerve of Wis to be the abs simp compl
Wis with vertex set s and simplex set TEs we spherical we can do barycentric subdivision

on Lewis to get L wist and then take the tone on L Label cone point 0 This space we
call the chamber of Wis and denote it byK we can define a mirror structure on k by looking at
the simplicial star on eachvertex s which is closed and gives us smirror Ks Now we want
to think about thenerveof K

It spits go

9 take is tobe

d
see that ksn't Kshka Kunkt are all

Isn t.it
nonempty and Ksnkenka isempty so we
relover our original nerve

go u

This is essentially just reversing the ionstmition The second part follows as a loronary ofthe lemma

7.10Definition The Davis complex E Wis Ucw k

7.11 Corollary Wis is connected Hausdorff locally finite and w acts properly discontinuously on E with
quotient is Allpoint stabilizers are conjugatesof spherical subgroups of W

Follows from lemmas 6.18 6.19 and 6 et fact that Wson is finite V seek
i e so all point stabilizers are finite

712 Examples
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3 W is the 13.3.31 triangle group then etwist is the barylentri subdivision of thetiling
of E by triangles

Remark 7.13 if w is a Eunidean or hyperbolic geometi reflection group then was is the barycenter

subdivision of the corresponding tesselation of It or tin by P

If W is finite spherical then Elwes can be identified with the Barycentric subdivision of the
associated Coxeter polytope

The remainder of the course is devoted to proving the following theorem s t
w sts Then

Thm 7.14 The Davis complex E E Wis is contractible
outwi 0
b s.ws stssest

wt stst tstt tsout w ses I es ws eslw
length shortened

Remark 7.16
es us lstw Il so s Inlw wout w

m
If escurst c escort then it su isnt a reduced word for w we have that by e on ws

note that if Isi isnt a reduled wordfor w then Isn nisi areduced word for w so lstwl lslw.tl
In particular estws es ws es star estsu l Now If estwitcestwl then escsw c estaY
so by e g i sit w t ssh si s a w s si sus

so actually In w se S I I areduled word for w ending in S in

Theabove says that In W E 1 But clearly if I reduced word for w ending in s then escwslcescwl
so K S InCW Incur I



finiteword

p

Lemma 7 17 Wis Coxeter system Suppose I w EW suchthat estswotsestwot t se s Then w isfinite

Suppose W is infinite and let s sis isi be a possibly infinite sequence ofelements in S Let

Si sis sit be an initial subsequence in reverse andassume each si is reduced we assume for
contradiction's sake that I wotw sit estswotcestwol uses

Claim Wo has a reduied expression starting with Si ti

Assuming the claim weget that a new elwo ecu t flutwo

because we tookthisarbitrarysequenie which is possibly infinite andsoany reduledwordfor u in w appears as a startingsection

of a sequence ofthe form 2 so if Isis sit say is a wordfor u then this is reduied andso if wo i t

is reduced then awo has reduied word a and so ecwo e si flat etat t ecutwo

Since estatwo no ecwo s elul so ecu isbounded t new W finite remember w is

finitely generated This is a contradiction we assumed w infinite and sothere can be nosuch Wo EW we've

thus almost proved the contrapositive wejust need to show the claim is true

proof ofclaim base case when i i true bythe exchange condition weknow that uses esiswolcestwo
andso we ran exchange some ti in a reduced word forwo for s placed at the beginning

ie if it is stil a reduced word forwo then worst ti th and es ti this site a reduied

word for wo still

Inductive hypothesis assume that wo has a reduced expression starting with si i Then was that hasone
starting with Si now again by the exchange condition estsiwo c estwot so wehave that we can
exthange some t inthe reduled expression starting with fit for si plated at the beginning The idea is
then that if we have say wo has reduced word sin sin si yes yal then we cannot
omit oneof the si's say t is in the initial string then

si i sic l si 5 sic

Then cancelling the stuff inthe Brackets and up to sit gives us

si l s si sit

But this means that Ii Csi si si i si si isil which is not reduced E so we exchange

si for a t after i i and the claim holds

Lemma 718 for Tcs there is aunique element w of minimal length in the coset wwe such that all
elements w eww can be written in the form w wa as we such that

estw estw t esta



proof let w be a minimal length element in Wwi This looks a little funny but is okay just thin about the
fact that wweis a coset andso can bewritten in multiple differentways Anyway but if u e wwi then

u Wg for some ge we so un e wWt Also w ugh andso white ant t why ant Alrightsowe
don't have to stress too mum about thenotation

Suppose w has min length in wwi write w in wwi as wb with be wt Let a and s be
reduced words for w andb respectively Then as concatenation is a wordto w perhaps not reduced
suppose as is not reduced

Then D can delete two letters in a and s Both cannot be in a since w had minimal length Both
cannot be in s or I not reduced Also cannot have one in a and one ins as then multiplying by
si si sic on rats gives you a shorter word than w in the coset Cawith oneguy removed

Is is reduced and hence ecw ecw tech

To see uniqueness now suppose two such elements v and w are in wwi lcr elwl Then v wb
for some be wt and l wb eewit e b eat ecb o so bee v w

Proposition 7.19 twew In w f f i e Wench is finite

proof consider the coset wWenew and let u be the unique element of minimal length Then by lemma
7.18 we WWenew can be written as w na a e Wench s t

es w es u tesla 1

Now t se Inlwl we have es ws es w t by afn of In w Also for se Incat as ewench so we

have us has satisfies

es us local teslas I

so from t we get
H

estates last c escultescal
a eslast c esta v se Inla

es sat c estay v se Inla

So we're in the position of lemma 7.17 we have Wench Insult a Coxetersystem simplyusing the

fact that Incules and I a ewench sine at wench s t t se Inlwl

es sa l c esta

So lemma 7.17 say that Wental is finite ie Inca c 5



Lemma 7.20 The Chamber K of Wis is contractible and for Te S K Yetkt is also contractible

pf remember we said that k was the cone onthe barycentric subdivisionof the nerve of was Lewis
The cone on anything is contractible to the conepoint so k is contractible

Now for 4 TE S T spans a simplex or in L clook back at denof L has simplices set 51303
and if T E51901 then the elements of T are thevertices of thesimplex o incl Let or denote the
barycentric subdivision of o int Then on is contractible also canthininkabouatbousimitas a cone so to show

that KT is contractible its enough to construct a deformation retraction r kt on now a vertex
ne k means that x lies in some ist which corresponds to subsets T es sit te t In particular

T nt t 0 so we can map a e k to a vertex of a corresponding to Tint

We extend this to simplices by mapping simplex au with vertices no evict to simplex thro Tov

or e k es I est evi t osiek need to go over proof

proof of theorem 7.14

Recall Theorem 7.14 the Davis complex Wis is contractible

List the elements of W as we wa wa such that estun s estuntil that If w is finite then
repeat the last element so we have an infinite list

Let un win own E W so w nut un

Let Pn Yeunwk Y Wik E E Wis

so Pi e Pit and E YEPi

Now Pn Pne bunk

gluealong mirrors

Ineed tothink
aboutthis

which mirrors do wegluealong ks I ecwns c econ ks I se In un so we glue along KIntwn

By proposition 7.19 In ul E 5 so by lemma 7.20 k is contractible

We have Po K is contractible and to get Pn from pin we glueon wink which is contractible since
K is contractible and Wak preserves structureof k along KIntwn which is contractible

at eachstage pmis contractible E is contractible



Example 7.21 5 q Do

List elements e s t St ts sts est

Po k which looks like ke
k ks

In1st s so glue get Pi

m

tk sk

In stl t get P

Stk

tk sk

In es 355 getPu

tsk call

K sk

Inists sits gluealong kiand ks getPs

stsk

tsk stk

tk sk

and Ps E will so done


