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1) Geomebic Reflection Gioups

Coxeter groups are discrete  Groups generated by “retlections” - In 92,3 we'l  make 4nis precise . In rhis section we'll
See some examples.
Recall a Riemannian  manifold is &  smooth  WManikedd M with o  posivive definite  inner product on TxM V¥ xeM.
This  inner product allows WS 4o define  Seme Nokions:

isometries :  jnner product preserving  diffeomorphism
* metcic: (distance)

geodesics :  (dissante winimising Curves)
*  SeCtiona) Curvarure
11, Noration

n

3 = n-dimensional sphere c ™' cenvced av origin  with round metric

E":= n -dimensiona'  Cuctidean space ¥ (R",-)

H" - = Nn - dimensional real  hyperbolic space

P SEL any of hese Sspoces ", EM, o W™

Isom(xn) 1T isometny group of x*
I.2. Remark : $£'. E™ ond H™ are all Riemannian  manifolds with Constant  Seclonal  Curvatuce 1, b, =1  respectively.
Aside.  Doincaré disc model Por 2

Poincaré disc model:
X4yt aat =y Ol poiks lig inside +he
>0 unit  disc.
9€oden'q on disc are semiciccles  oc diomerers.-

I3.  Definikion: A  nyperplane H e X" is a tially geodesic, codimension 1  Submanifeld of X"
A hyperpiane Y separares X" into twe connected  Components , caled  halt- spaces

yperp P
o ;‘| ) ‘ ) @
For each WC X", 3 a refleckion € Tsom (X") which @) fives M and b) exchanges she Ossecialed Al - spaces-



1.4  txample finite  dihedral groups
L4 Q2
\
$ with  "nyperplanes © & ond €z meeting ob angle . s' cr?
technically not hyperplanes because  Mov  fovally  gRodesic.
Then $iSz2  iS a miation W W i-e- £ $i52> ¥ Cm
Sa
S
The SWP W= <s, 82 3 Dam = Csisa S.‘: S: ’(‘-sl)m= e>
A= identity
(gnup generated by  reflections 5, and 52) (grvup Qenerated by IeHers S.,Sz)
15 +he dihedral  group of order 2m ( Symmetdes o she ngon).
1.5 Example = infinite dihedral grup
St Sa
E' =R' ) w3
° ]
hyperplanes are poiats ,e.9. O and 1
let S and Sz  be reflections about tnese  poinks
e, Si(t):-¢t and sa2(e)= 2-t W teR. Then +he product $iSz  iS  translation by 2 (sees)
i-e. {s\Se) T I means do Sy then Sz.
and W= <s,.,s5:2 [S2= S:eY = Da i3 #he infinite dinedral group:
Notation: if <s,52> T I, i.e. S5z hay infinite order, then we  Will write (sis2)* = e.
Hence we can alse write wW: <5, | 87 =52 = (ss)™ =ed
\-3. D ekinition: let X be a topoegical  space and G QX by homeomorphisms . Let Gx be the orbit of AEX.
Then a  fundamental domain  for GAAX i KCX sk
° K is closed and connected
* Gx Ok 3¢ V¥V xeX
G 0K = it xe int(k)
Kis known as o Stice fundamental domain i Gxnk =% Y nek (nov just interior). Thai  means that K Convatns
exactly one point  fom eacth  orbit.
1.3 Example
' S Sa
3 R D A R
(] ]
Then  the closed intervat  Co/t] 1S o strict  fundamental  domain, Ond S0 s any arerval Ct,t4) VW EeER. The
inlerval T t, t+2) s a fundamental  domain, buv is mov Strict.
s, (&)= -t
s . (t) = 2-¢%
Rem: notation: SiS2°n = su( sz (1))

need ¢t do a (omechon here.



Recall:  simplex DX i dme  Gavex hull o (n) points , if  called regular ¥ Ony  permwiation of
verdices  Can be  realised by an  isorvety of "

. n . .
Dkn: Q@ Simplex Sk S ¥ for ken s 4he tewex hull  of k+1 basis  vecrors 0 X" L Ii iy K -dimensional.

A Simplex is  regular ¢ all edges have +he same length. A*  denotes e regular Cuclidean k- simplex.

Ez H_|1
recall the half spaces
are +he connected components
N e (omplement of the
edges are Same  [ength hypecplane .

n .
1.9. Definition : O Convex polytepe Pe ¥ 1S 0 conw¥ tompacdt intersection OF a Finite nNumber of closed halé

spaces in X with nonemphly interior

The liak of a wvertex Vv ¢ P is linkp(v) = PN unit  (n-1) -spwere centred at Vv (spwere in T‘\K‘)
This  is @ spherical (1) -dimenstonal polyrope . P is  (called simple it V veP, linkp(¥) is o regular
spheric®  gnoex.  Equivalendy, P is (alled Simple if eath vertex is adjacens to exactly n  edges.

her sure i Guskia EC

2 .
|.\0  Exomp\e : h=2. A convex polytope in X Is & C(onvex polygen, (gnd Every Convex polygon is  Simple.

"4

Grrws  rep. choite oF Wt spaces

S
/ \ rememioex: po(:,bvpe ¥- simplex. delow, we have
2 - simpices in (@) and (b), pu n (©) jis
nor a simplex (2 dim. but not convex  hull of ‘spu'mb\-

(o) (b) ©
Simple Simple not  simple. (linke(v) s not cegular)

lhese are sohvd swapes.



LI . Theorem (o prove \aver) Pe X" o simple convex polytepe with nw2. Lk LFilic1 be twe sed
o (odimension- '\ Caces of P. Then each Ti ey i an  f; € W™

Suppose Vi) F FiOFj¥g, ithen  Hi ond Hj interset ot an ange .T“:; where  ™ij %2 €L,

St M=l and mij=o0 When FiNFj=¢@ ) and Si be ceflection across  Hi ia Tsoen (M)

let W be +he group generated by siYiex. Twen:

1) W has +the Fo\\0win5 presentadion: W - <sioe (5"53)"“5 * € V‘:_]CI)
t) W is a discrete subgroup of TIsom( ")

P i oa st fundamental  domain  for WA X",  and +he action induces a ﬂnel\’mioo ot X" by
Copies  of P. kling

(}
.12 Remark : SeHing  mi; =\  Qives (sisi) = e D s;*:e Viel,

113, Detinition: Q groue W is @& Qgeometric  reflection Qgroup W itis Dzm, Do or @ groue from Thm 1.11.
w is  spherical if X"z $",  Cucidean ¥ A" E™, ond Hyperbolic i Y¥": H"

i+ Remark: gwme}ru reflection 9mps are ouc firss  examples of (Coxeter Qroups. Coxeter clossified aW spherical

and Euclidean groups  in 1930s.- Hyperbolic refleCtion groups are Still nov cussified.

115 examples:  Triangle groups :

LY}

n ™
Vp,gre T st 2¢p¢2ér, 3 trange P S X with angles /o)l e qnen

W= (51,852,338 : S2= s sy e, Gis2)? = (5153)" (fss-)'= ed

when *®E = $l, the angles of a tviange add ue ¥ 7 180° (W rod)
POSS“"Q *f'\p\QS‘. (2,1,()’ (21315), (113;"‘) oand (7-) 3, 5)

)

eq. (2.2, 7) z ’

5,4



2 T.,Tr,T.
When AP :=E® , 4nen IR ;9. p,a,r=3  Tnen
Example 1(b : Symmeiric  groups
For n»2 and P a cegwar  Euclidean simplex D™ S E" . Llabel 4he vertices  with the set
'I.Som(b"s T San e  symmetric group  0n Nt \eHrers.
Embed O™ € E™ st vertices lie on $"° ond *hen ‘puff ow' D™ 4 lie o "7
tessellavion of 8" by +he boundary D"
egq n=?
s / ]. \ \
Take bamycentric  subdivision of D", and le#ing P be maximal in Wis subdivision, apen we Qe
sitze
W = San =\ 5130 (sis))* = ¢ li-)l»2
CsiSia) =8 foc \gignmn
Let Si = (i,i0) gwes  Sn+v a3 permutakien  group-
Exomple  [13:  Tilig of E" by n-oubes.
<,_1
7 P |ss®
Sy ! SySeP
SyP TyssP
&> P
svo | ss

i | h+|}' Yhen

then we get a

o presentation




2. Defining Abstiact reflRUion  Groups

2.1 Definition ( Tits (asos)

et S= {s"}icl » T Fiaite indexing ser- P Coxeler matdx s o Symmetrit  makrix ($x§) |, M= (Mi)');,jgl
Suth  +hat  4he  following hold
C my; = \ V;Q 1
m;j T Wi € izlglq’l"‘) b {"} ‘di'&]
The Coxeter goup W s ¥e  group
w =<s | (sis;)™ =e vijer)
and the pair (w,s) is caned o Coxeter system.
2.2 Remark:
© N miizl @ Stz e WsSi€S. Alse (i)™ oan be  rewritten as Si8j 558 T S5 5550 e
~ —
mij mij

Gieometric  reflection groups Ure  Coxeter groups,  but  nor all Coxeter groups are geometvic reflection  groups

© A Coxeter group W Can  correspond 4o wmuwiple  Coxeter sutems.
See iSomorphism probwem  for  Coxerer Qroups

* one can define (W, S)  with ISl infinite.  We restact oOurselves 4o fintve generating  sexs in  +his Course.

Nev: iwo comWarie) are of  Tit's representotion (4o come later)
2.3. ComWany - if (w,5) is @ Coxerer sysiem, then rhe elements of S are
* pairwise distinch ond ° involutions.

6 (w,5) is a Coxerer system, tnen Vi#j, Sisj lhas order ™ij n W

let G be 0 gowe with genersting set S Fe.

1.9 Definition:  The Cayley gmph of G wa- §, Cays(®@) is iwe gmph  with Vertex set = G. T+ hay the
dicecred edge ser 1 (9,95) ¢ 9¢G , 5€S, s*3e}  and undicecied edge set 1 19.95)  gcG, seS,sts e},

Al edges are labelled by Coresponding SES.

Ex: G:=Cs * <37 . Then Cayy(Cs): -

In our examples, § is alway @ set of involuvions (elements +hat square 4o identity), So aw edges in Cayg (@)

will W& undirected (creally an edge in botw directions)

2.5 Remark . Since S generates G, Cay s (&) is connected from CormMary 2.3 . We Oise  ¥now £or
(w,5) a coxeter Syseem , Cays(w) 5 simple (ne loops &t veriex , and no double edges).



2.6. lemma: G acts on Cay ¢ (@) via  wuliplication on the left . This oacton preserves edge lavels.
Under Hhis ackion, i€ sP=€, then  gsg” i the uniqre Qgrup element  whith Elips  ¥ne
9s
tdge 19, w3, i
9
s
./'S
99 L
2.3 Ttxample VYam SiSuliz Sasis,
St St
€9 Do , S= 5., 5% 25 iS2
S\ S2
S S,
DN S
3
Du: 2 St Sz S,
552 s e Sa e s,
2-83 Remark: In case ot geometnc  reflection  Groups, Cays (W) is aual o rhe aessellation of %° by the
pb lylope P.
2.9. Examples
Triangle gep  (33,3), S= 25,510,953}
$.5:5: S TS Sy
ANERAVARVERY
01]0z) 2022
involutions , Gn element S o product of genemtors Sy, Sa , Si€S,

.10 Definition : given a group G with 9eneml|'n9 set S of

and o word s

of geG Wrd S is

o FPinile

Sequente of generators
Qs (9\ = MI"\? nenN l 9=9|...$n S:ES}, and we set Q:(Q) =0 . ¢ ’QS(S\ =n% | ond 9:&---51\,

($1,---, Sn)

(care pariicutarly apout +he ofder)

S: €S . The word length

nen  the sequence (S,.-,5n) s called a reduced Wword for 9. generators hove lengh 1 b wnsomction.
Noje 11 depends on choice Of Tgenerabing set.
e.9 in Db , S22 5 an element , Sisasi ¢ S S\32 (s., 91,5-) and (Sz,5.52) are reduced words Por  Anis e \ement.



2.1l Dekinidion: The word mekeic on G A3 given by ds (9W) iz £ (97'h)  for g,meG . This extends b a pavh weric

on ngs(G-,S). Each edge is given lengin 1. The distance between {wo verdices is  ine Shorres: path  between them.

2.12 Example: ds(e.9) = £5(e'g) = &(9) =k, and it (Su-45e) is a veduced word for g, then we get a

path O length K from € 4 9 in Cays(@)

. ond s pa¥n has  minimal  \engtn
e s\ 5152 5,553 2

2.13 Definition: A pre- reflection  Sysvem For 4 grup Gis g pair (X, R)  Such  twar:
* X is & connected, simple gmph
* GARX by gmph awrmorphisms
* R s a subset of G and
9 eveny reR Is an isvowtien  (ie. r*:e
®) R is Closed under (onjugation : Y9Gk, reR, grgT €R
9 R geneiates G
d N Tv,w)e EB(X) 3! yeR wwith fips Tv,w) (ig. {nierchanges v and w)

®) each reR flips at least one edge-
T« reR, et Her 3 midpoints of edges flipped by r&
. lu Examp\e
W: D = 15,52\ s2as.t: (sis0dsey S: sy, St

Take X = Cays(w)
R = is|l§l., $i825, = S$as, SI}

$,51%
S5, S5t en (¥, R) isa pre reflection
System for W:Db.
N
JSJ:?:
52 Si
se e S\

W= Dozl si St 18228 = (55,)"ze) Sz 1%59
X = qujs(w)
R: § wiw' Is;ies, wewd

| | | . | | | (x,R) s a prerefle ction
S Sy e Sa S8 $:5: 52

System  foe Db

$1825 1 ST S Si1S2



205, temma. IfF (xR) s a prereflection system P G, then G acs bansitively on  V(X).

?'°°" X is  connected So 3 path  bttween any jwo wvertices V and w: (\u Vo,V.,---,Vs’-W) . et ri be twe unique

involution  which  Flips T vi,vial,  Twen k-t Feez oo oV T W fle=t... v Sends ¥ O W
-——
< []

2.0b. lemma @ le+  (W,S) be a  Coxeter sytem  and R: Fws w |s€S, weEWY  Then (Cag,{w),l’\) is &

preveflection system  For W-

-1 -
Yo owstw 'z wwlze

Tw.,ws S €Cayslw)

procf: TFrom Rem 25, Cays(w) 15 awways O tonmected simple  graph . Also (wsw')*= wsw™ wsw’

V wsw™ €ER, So they're involutions . Moreover, wsw™' is the Unique  reflectten which  flips the tdge

2.13 petinivion: Let (X R) ve @ prereflection  system @ G- Then (X,R) is a velflection system  if in  additien i+ savisfies

£) Hor each  reR, X\HWr lhas exactly hwo Components.

Q W ws
3. Combinatorics O0f Coxerer Gwoups
. Wlwy Wi Tlws
In ¥his  section, we will prove : ws —— W

3.\ Theorem: (er W be a group  generated by a set 5 of distinct  involutions- Then +he  following are equivalent:
M (w,5) is a Coxeter sysiem

(@ e X= cayg(w) , R= Twsw™ |ses, wew) Then (,R) is a reflection sysiem

(M  (w,5)  sarisfies tne ‘delerion'  Condition

(“) ( W, s) sakisfies the ‘o(change' Condition

3.2. Definition: The paic (W,S) is said 4o Sarisfy the delerion condition if ‘the tollowing holds
D) it w= (5u,-,5%) 3y a word in S with s (5i...5%) €K, then 3 indices i<j

A A A
Suth At S-Sk T §p.e. Sioec S5 - SE L where  5; means delete e  ledver Si. (can detete 2)

3.3 Definition: The paic (W,5) is said 4o Satisfy +he exchange Condition if ‘the following holds

(€Y (si,..,5%) s Q@ reduced word, iwen For any s€S, either Ls ( $51---5k) = K\, o

hd i2. moakey oanother reduced word.
Wz Si....8% T SSice$i---5k  Poe G€ Lo,k
\} this doesnt happen, then £ (ss,..S%) z K-\

proet of Thm 3.):

(3) = (%) (deterion = exchange).  Suppese  (Si,--,5k)  for w= Si .-k Gnd Se €S . Then
25(3031---Sk) < {s(s.w)

€Qg(se) + (W)

s K&l

I8 = kel *hen e're done. So suppose L3 (Se.ci3k) € KAV a, contvmdiction's  sake- By (o), 3 indices vei,j ek
A -
Such +hat Sew * Sg... Si- §j .- 5k, Since our original  word (Si, -, Sk) 13 reduced, we must have 130,
A

A
Ohevwise  multiplying en the leFb by 3o Gives 4. So  Sew = Se:c 85 .-Sw T S ... S5 5k . Multiplying o the

left by So gives w= SoSi--..Sk . Hene (w,S)  sarisfies 4we excwhange  (enditioa.

We new prove Some  (emmas  needed  for (O = () >C¥). Fst, a discussion.



Discussion :'  led W be generated by S as in Thm 3.\

Then 3 o bijecdion

?_ words i $ 3} — Pats i Cogley graph oF W aen by $ *}
ot shart  ar iwne identiny

S\ [ X% .
AT  — — —_— .. —_—
e e S, $\S2 Sie-- Sw
tee R: 1 wsw weW, ¢S}, Fom lemma 2.6, 3! reR whicth Fflips each edoe
S S 5.3
gi\‘Q'\ vy rj ER SJ- qu ... 8, Toc  examp\e, €\ 25, f2 % S 8¢S,
So we get a

, f3: S\$253 31 3,
efleCtion s equence (ey, %) Por & word  (Sy..., Sk)

1 Hr =§midpom& Tvawl o fips {v,w}} , then e S‘_‘j (si,--50)

crosses  Hr f the associated pa in
Coy(w)  contains on edge Rlipped by r. So  (51,..,5K) croses Hy,.oo, Hry

(51,...,$K) has

associated path €& ——

E
sise —2 5,8a3y — ... —— 5. s The edge Egz
3 SiSa —— 15253 gnd is  flipped by Ieft - ocking by r3:SiS2S3 32
(s.s;sbs..s,)(s.sz} ($,$;95$1$4)(‘.$;S3\ H S,StS)y $.S2
This element s unique.  Similary, ewey Ei s uniquely Plipped By i
3.4 Lemma: ¥ Ww,5,R be os Goove, Ond (S.,..,5x) a word in S with associated ceflection  Sequence
(r,.c,ve) sueh  tmab (P B S iz ) B some 16§ €) k. Then in W,
" "
Se...Sx < Sveee Sio.l Sj...l‘.g
proof: L& rzeiz rj ond wp=T 5;...Sp. Then in  Cays(wW) we have
Arplying e reflecion ¥ 4 the palh Wi WU gn o pak fem  Win b W
r idea is 4o build o poaw thar gels
: You to he right element. 3¢ it
° L e —— . [ R — ) .
e Wy Wioy WN. e Wy /""\-\ Wi Crojses  ouer +wice ,then we can
\ ¢ . . . .
\ / juse reflect it ond ignore Si
\' { ond §j-
\
! !
| ’
\ \
! \
4 N
G ¢ ¢ ¢ — e @ — — O c——
we w; Wi-1 Wi w; wi-1
& -
r r
The oacien of WY Cayglw) preserves edge labels so we QF 0 new poth 1o WKt
(Sy, .., Simt) Sidy, e ey Simt, Sjel, -eery sx) (ge+ rid  of

si and §j edge)
05 required.



3.5. Llemma : Wwith W, S,R as awvove, Inen 4or each reR, Cayg(w) \Hr Wos @ wost two Connected (omponents .

proof: ¥ = wsw™' for Some  weWw, s€S.
Claim: W - Hs = Huswt = He

s ' S
Sketch: W S Flips  edge "——‘9,. , +hen wsw™' Plps . s . = W { « — )
9 wog was'

So w- Hg € Husw!

other side comes Aom the fact ¥hat +he adion of W on edges is bransitive

Then  WLOG we (an prove twe lemma for Mg (vecause WR Cays (W) by isometcies).  Tirst , we show 4o all

ve V( (oug,(w\) = W, then either vV or sy i$ in e Same tomponent of Cayglw)\Hs as e.

let (s1,%0)  be o reduced word e v A9 e get & path in Cogs(w) Pom e 4o v with associated yeflection

Sequence oy een P 0 s#r; Lbor any i, then D e and Vv ore in tve  same  tomponent of Cayslw) \ Ms

To See 4his, ONotice tha!l if SFr Lo any i, then s does not reflect an edge of e parh assoclared &V
Cby uniqueness of the ri, each (] is the only element o flip edge ). So The path  asso ciared ¢ v cannot

cross Hy. T.e. you Start Gt @, gnd end at V) and S palh i contained in one (o mponen of cu.j,(u\\\'\s

NOow  Suppose Szl for some i. Then by Llemma 3.4, since (S, .-, %) 15 reduced, 545 ¥iz], Then ine

word  (s,5,.-,5¢)  for sV has G reflection sequence (s, v!,..., r;'\ where "j" SYjS

Rememoer ¢y = Si, g = Si52%, 37 SiSe532%, welie jup odding & new fist  serm:

N 0 '
Then "-=5}=$,qnd 5 FS for i4j41. So we have (s, t e, ve') oy exattly  hwe instanes of 5. Henee

we (an oapply \emwa 3y and delete 4o get a  word for SV whith  corespends 4o 4 path  from € Ho IV nov
erossing Hs.  Heme @ and S¢ Bre in  the sawme  (omponent.

Coim: we are done.  Wwhy? Suppore thot  Coyg (WI\Hs has > 2 compenents . Then

there  Rxigh Wivz {n #ne Sfame (ompomens 4§ € st Sy, and Sve are in

2 olher tomponents [ components are  nenemply g0 COn  cOATMACt  fuch Y, Gnd v2)

Now evew path from Svi 4o Sv: hat 4o CmSs Mg D evewy parn  Row Hs
Vi to V: cresses  sWs o Hg L.

]

ter (WiS) be 0 coxerer system. For any word (51, ...Sk) = S ted n(r,3) be  4he

number of times the
Corresponding  path  Crosses Wy in Cayg(w)

“t
3.6. lemma:() for any word ¢ = Csiy-oi ), S6)  with Wz Si--Sk, lnen for any reh, (—\\“‘"“E ) depend)
only on WEW (nov tae word representation but  Hae ochual  element).
G 3 a group  homemorphism W — Sym (R x Tt1) we w5t bulr.)s (wrw", (_‘)"(':i\i\l

where  § i Gny word represeming  w.

* so we Wn say thot if nlr,g) = odd fx one
representing )
wod 3 4r on element &, then n(r, Q) is

also odd fo¢ any oer word G for k-



Pmnfx First  we'll define ¢ o woerds, then Show it exiends t0 a group Womoworphism ond  this
wi swow  G) as aven as G -
Srs ? :
A& ses, le ¢s € Sym (R x 189) be given by os(r, ) = (srs, ¢-D i)’ where Ses T o ey
We Con chech that $s s a bijection , since $s ° P = W RXx 2\ (uhg involution s a  bijection)
L intn . - PR A N s x93t
We can  exiend ems  definition 40 words: TIPS = (s Sk) is a word, 4then we defing 3 € Sym(Rx31Y)
b ve
¢s = ¢s‘ o .- °¢s
and ctan Show inductively that (r.s)
Ps (r,e) = ( se...sirs, o5, =y z)
Let's check thav  this definition induces A homomorphism w - ng( Axgts) | we wonl 4o show <hat
¥ S 8 a wod foe  (sis))™I mij Finite, then @s s tavial  (i.e. respects relaions of W )
. |=j Tnen s = (s,s) (bi s Ps °¢s = id NV seS Vv
¢ i*J Then s = (si.3) , S8y - s;;sj}
Zmij  letrers
of form wrw™!
L oM AMij
Then ¢s (r, €) = $)S{ ... SjS{r S;S;...8i%9) = (sjsi) I (sis) T= ere =r.
s .- 5
'zmj letters 1.m;) lekters
We also have 4o Show that n(e,S) is even; Y reER.  We'll deal with wo cases Notice snat
{85 855 W 5 qa subgeup  jSomorphic & Dam  where m lm;j. (o sure why not jush wi))
mij
w vrg <sis then s = (g;s:)\ , Los o path  that  does not cross B, IF W aid, then
r would fup some edge. Bul cemember Low we defined c:
© we Lowe an edge Say SisjSi Sis)sisy
Ten  the  unique T Plipping i IS SiSjSis)sis;Si because  (siwysisi SSysi)(sisjsi)
T 518 SiS) 555)%i5iS;Si
. —_—
T Ss; SJ' slsJ
Bu of cowrse, bwis s wade of Siand sj. Butr  cqd £Si,5j>. Therefxe wir,2):o0.
In the case that re £%.3)7, then we HKnow that r is some $i8j ... $183Si ... 558
I'm not  Qcdually  sure!
2mi)
I ¢ € <Si, 557  4nen n(r,3) = “m which s 2nen. |:|
IF s is a word 4 \sis)™, we Xnow  phat if say = (sisj)"‘s; wioy, then (s;SJ‘)"‘ musk ogpeav in
the word ® remember ¥ is 4he wnique edge vhat flips

g-.sj S} ——e s',s)Sisj

$iSjSisj

$13)St



Cm ol
Bul +hen ““W‘“J it (S|S)\ appears /ndhe  word, then since S 18 & loedh foc Lﬁis_))mj )We muse

Lauve dwqt m = nMiJ.

We know Jhat i€ ce £6i,5D then it Gos to be of twe dum  SisjSi--SiSsisj..siz (sis))™si (wlag,

wad  start with J). Anywoy, then

<= Wsi w! £ seme we <SiLsiv. And  in pardiaalar,

L

P edge  Slipping W — wsi

whot  Qappens & W s a subword  starking 3 7

ldea: You Gowe yow Cayley graph , and  you have a closed pat in 4he  cayley geaph coesponding o the word
s Ao (i)™ which i jus e

possibly  repltition

il
B word 5 for (5sis)) Wze Coccesponds tv any  closed path in Coys (W), starking and ending a+ €. We knsw
that  the path is arbitmyy  amd S0 cam imowe  some Skis with K343 e know  that  if you  have

Some v € £5i,5)7 flipping  On  edge of this path, then since Ris 4 creflechon system, r klips twis edge

and  another edge e/ of the (ay'ey gaph



Proof  of  theorem 3.1 2 () > (2):

B corerer sgsem  (WiS)  gues a  refledion sysem whee X Coys(w)
ad R = T wsw': weW, seSh,

8y Lemma 2.6, we already now that (X,R) ¥ a Prere(»‘leaion syskem  for W.

So we only Weed +bo show +nat
condition (F) holds: F) Fo each  reB,  X\Wr has exacly

fwe components.

Bj lemma 3.5 we Know that X\Hr has at _most  +twoe Components for @atW reER. ¢

the claim follows ¥ we
can  Show et Hr  separates X

( then W must Wave more ¥an one component).  WLOG,

similorly o before
we only need Lo Show ehis o Hs :

we saw Ehat e wswl,  then Mr = w- (Hs),

and Since
WYX via  isomebdes, then i Ws separates tne Spate, yaep so does  We.

H
So let €= S- 35 lemma 3.6, Since n(r,s) =n(ssl= 4 (have ) 'S) , for any path  from e Sin¥
nir,w) cs,wy T,
Crosses Mg on odd number of times.  Twis i becawe (=) = (-0"™ is independent of any choice

nirw) _ ncr,s) n(s,s) _ \
of word W for s, and so we wn Just pick L) I (1) R ("l) B ) R ; So an odd
number of times. In pars cular, it must crosy Hs ot (east once. * Sollows thatr e and S i@ +hen
n Separate components of X\Hr

0"3 path from € o s cresses Ue an odd number of &mes, so eweny path @ »S s split \,5 Hr. |:|

Poof of  Thm 3.4: (2 ()i sagy ehar i (X,R) i a reflection system, then i sarisfies bne deletisn condition.

Recall ehe deletion Condition says that (f a woed ;s nof vseduced, you can delete 2 gene rators from iH

word and  syi ge+ the same  element.

ﬁ 3.4 Lemma: led w,5.R be as Owove, Ond (S.,..,5x) a Wword in S with assotiated ceflection  Sequence
<
z (oo, ve) suen #mar (rye B) Sb K= £ for some Vei €) Sk Then in W,
" A
Si...Sx < Sy S oenn S5 - Sk

So if we con sShow that § s a reduced word (> ri ond () ate parwise dikinck, rhen the claim will follow

So if S s net reduced, then 3 i#) st ¥izrj and then temma 34 D €, ---Sk = Sy Si-- S Sk

() follows fromn Lemma 3.4, \we're interested in ine Converse:

rr Components whose  hyperpianes

i R : . separate
&) et wesi...Se gnd Re,w) == re e and w are 1a diskinck (omponents of X \Wr . candw
Then  for re Rle,w, any  path M e @ W must cress  He ot least once. Hene  © wusk be  in the reblecrion

sequence for w, i.e- r=r; Rer 1¢i¢k.

ANy  path , including the ceduced word path from € © W mus crss Hr for all re R(ew). ANd so

Queny reR(ew) must be in ihe vefleciion  Sequence ¢ +he veduced word for W Hence
2(w) 7 |R(ewl.

But we Oassumed chat (X/MR) is a reflection

sysiem,  So K\He  hos two components Qo eweny i in +he
re€lection  sequente  for Wwe S,..-Sk.

) of  Which there are K distinct reflectiand by Qs umption.

( Of course
remember  khat  r;  live in R by (onstanction ,  tney are  of the  fum

wsiw™ ot W Gy.e-Simt )



Now , the path w = S,...Sr crosses Hep % '-=|.---,K, and particular (z think) W+ does so only one,

be cause the T, are pairwise distint-  \up 1 think that's Correct-  And Wnerefore e and W wust e i
ceparate components of X \He; Visi,. .. k. Hen ce l R(ew)l > k.
Therefore k >, e (W) > IR (e,w) ‘ > K ) =2 QLw) = K, so inat (s‘ s Sk ) is a reduced word Hr w.

[

AU that s 1eft nowis to pove that () > (1), e +thar W saﬂs?s‘ms the exchange condition > (W,S) is a
C oxeter s\n,siem- To do so, we stale and prove Tids' Solution +o we word prblem. nis  will ke o e wnile,

o Wod on &0 your horses

3.3 Definition: let W e generated by o set oF distinct involutions S ond S FL €S such that the order of
st, wmse, is finite. R braid move on o word ;A S Swaps o  Subword (s,t,s/t,--.) of \ength ms¢

with  a subword (t.5, &5...) of tength  wst -

3.3 Remark :* Since Y™ e and stz t'=e, carrying out & braid move does not change the group  element
which @  word  represents- GO s e m seseosks 0TS KT sk ks

U 'Bmid move'  comes from redions in +he bmild group , which are aldernating relations of length 2 and 3.

3.9. CExample: question: do they have to be right next 4o eath other in e word? | guess not
2 LI 3.

In Do=< s,,% = SP= s (s52) -e>l braid moves are given by Swapping (=1,52,5) & (s2,5,,%2)

In Do = £ Si,%2 ¢ si':sd 2@V, tnere are no braid moves.

supise { S1RY is a prsentation 4o a gow & The Word problem £ C(SIRY is  the ollowing:

Given S a word n Sus", /5 +here an a(gorilhm for determining (F +the elemen+ it represents in 6
S the identiyy?

3. 10 Theorem (Tits)
Suppose W is a group generated by a set S of distinct nvoludions, and (W,s) satisfies (E). Then
(9 a word (1, 5K) is reduced &> it connot be shoritned by a sequenc® of

\3) deleting a  supword (s,s) ses, or

G) o vrad move.

@) Two reduced wordS in S represent the same element weW & tney are related by a Finite sequence

of braid wmoves-

Cs,,5:, S4,53) = (S1,%) ;s a subword, wbuat (S),53) ner,



proof :  proof of 2:
= suppes® we  wave reduced  words 2 =(s.,,-,5¢8) and & = L&, te) | ben representing weW.
We'l  do a proof by induction on  F: Z(w).
Baw: if K=1, then 3 = (s):=%t LR some cgresakor  SES, and we're done
Ind- hyp: assume tme 4for elements w' such that 2(w) ¢ K-\,
1f Sy =t 7S, then sw is represented by (Sa,....Se) and (e2,86), Note twb S ond & dre Ocrually reduced:
Ip Sw i viot reduced, then 3 a repn (R, 5a))  with J¢ K-\, and then (s, -, %)) will be
a word  for SSw zw  with length  J¥1 € E-V4L SR, g conrmditkion since C(svieee, Se) is reduced. So
(S2s.-., SK) is @ reduced word Aor sw and so s (€r,...,te), 65 inductive \.5,, we can  ransfom
one inw 4he otmer by braid moes and wence we are done.
But whot if s, 3k, 7 In that cove, |ei sy=s and ¢kl
Claim: mse is finite, and 31 a word w = (uy,..., \%\9 repeesenting  w  starting wivh  (S,4;%5k )
of length wmse. nokice lengih K, 6. W i reduced
Given t+he claim , led w' be such anad u & u!' yia brad move on the imitial subword: Then
we hoave:
s AN u NN~ e ¢
braid move braid maeve braid move
where the fist and 1ask arows are from the cae wWhwere \words start  with the same \erter-
?m\? of claim:  Since W can  Start  with the leder s o t, 2( tw) ¢ 2w ( using reduced word
N
stuff lhe before) and vy (E) this means that $i152:-- Sk kS, .- SVt Sk foc some  \&igck
( remember exchange  (ondition says that tacking on a Qgeneratr 4 4he femd either increases e
length of the werd by 1, o we can e@xchange the generalor foc one in the word)
oll.aa, So Si..e Sk = ts,... ?‘. ce. Sk Now Si1 =S *t, so we cannot have that 1= |- Hence,
W is represenied by o word  Stareing  with Ct,s,.-).
fo gwz, let S, be (---s,&3) the length q aliernating word with last lewer s. We will show
\>5 induction  on q  that for any g <& Mee, we can find a reduced word for w besinning with
Se Then  because w has Finite length, 2 Mst s Finile ond +the case q = My proves twe claim.
Base case: q=1 done: w= $S2...5¢ and (s,s2,...,S«) is reduced
Ind- hyp: we have a reduced word s'! representing  w that begins with S q-1.
let ' = S W 9= even ) i-e.  Sq- starks n 4
b it gq-t edd , i-e. Sgq., seorts in s



Then Zs(s‘w) < Qx(w) ( remember we have reduced  words (s, sz, SK) and (b, 2, ...,40) B w,

so this is just e regardless of odd/even). Hence ty CE), we can Ffind onoher reduced word for w by
exchanging a letter o of S!' sor an  s' at ime start.

Suppose W in Sg-1 € 8", je. Uwis one of the  Pirsy q-1 \etters of s'. Then it folows there are

two distinct reduced words  representing Sq using only leters § and ¢ I think His  follows by playng Yhe

game dbove  with word Sq-1 - Perhaps jnstead you Just get  thot , because no other parts of W changes and
Se-t = Coovys,e) ¢ reduced , ghen dhis  other word foc Sq.i  must alse be  reduced. However, QL -\ < mse by
m
hspoehesis, and in  Wgqs,es, the only braid velation 13 Skskt ... = Esks ... ( remember (st) St o).

Mgk Mgt

So any veduced expression of less than length  m  is wnique, by obServ‘mS patws in  Cay is'“(wa.,,q)_
So we cannot have W in Se-1 - After applying CE) \ike we Said aboe, we get @ reduced word for W

starting  with  $'Sq. = Sq.

Therefore  we wave Completed the induction on g tmge , hence seHing ¢ :=mge gives 4 it wmse s odd o 4

it M5p s even.  This  wmpetes  the proof of (2).

]

(&) is &rivial. Broid moves dont affect the element the word represents

Pmof of (1:
(=) % o wod s reduced, i+ cannot be swortened at all. PERIOPT!

© Suppose S = (s, 5k) cCaNNOt be shortened by o sequence of deleing (5,3) pairs and braid moves. We show by

inductien on K that § i reduced.

Pase: K=\ V go et k7L

Ind:- wyp : Suppese bue Y words of length k-t- )
welll Swew ihen it can be shoriened by

[> Standard argument, and @ Q(s') =k - [ & Faite Sequene # Brid moes + (5.5) delevon

Then f:: = (%2,---,5) §s veduced 4or S,W. Suppese S is not reduced. Led W=* Si-..Sg and W': S3... Sk.

Then 2s (s iw) = Lg(w) € k-
L’—___\ * Lstw) s ot ceduced so Qs(w) ¢k,

~
55 (E) , w' < g'g; . ’s\,' ... Sk and s’ = (S|'S|., ey Si e /S®) \has l('\g“‘ K-\ and So is reduced- 39

port \2) of the Theoem, s' and s" are  bow reduced  wods Aw W'z S2..%k  of lengih ¢ -\, and

therefore by induction s' and s" are relared by a finie sequene oF Braid moves

Hence S can be transfvmed ints a word starting  with  (5,,5)) by o Finite sequenee  of Braid moves | 3o

= 5 can e swoened by a Pinite sequence  of deletiag (5.5) pavs  Gnd  sraid moves



Proct of Theaem 3-1 (&) = (O ¢pe oxcnange  condition = (W,S) is a Coxeter sysiem.

Suppose W is @ group aenecated by a distinct et of involwtisns 5= $iYeq.

AsSsume (€) holds We want +o show
that  (W,S) is a coxeter sysiem.

Let Mij be the order of SiS) in W. Deéine

a  (oxeter system  yging the matix  (mj) - (w',s') generatrors
s': ¥ ShiYien

] .
Then $:W = w ; s’ —si is a sudjective homomorpnism by the universal property of presentotion of W'.

We want to Swow that ¢ s njecive : > W Tw, so (WS) is a coxeter susrem.

Suppose +hat w' € herC@) and w'ie . Then W' is represerved by a reduced word (s!,....s¢) in ¢

Since  Blw) =e,

, So
$ (w) is vepresented by (si,--., S&) An s

=2 (%, ..., S%) cCannot be reduced. By Tw's  vam,
® (s1y,..,5¢) can be shortened by a Finive

> (sy, ..., s¢) s nov redu ced. ﬁ

= ¢ is inetive ond  hence Cw;S) s a Coxeter System- |:|

sequence ©of Braid moves and deleting  (S:S)  subwors. Bur then



4. Tit's representation

Thm CTH'S): Lot I be a finite indexing set, ond e+ ST is;}l.ul and lets M= imj)i,jet
Then there's a faithful representalion P: W = GLalR) , where w: <S| (S:Sj)mj= eY , where
Such  that

* Vi, psi)=:<i s a linear involubion  with Pixed point Set G hyperplane

© for all §,j , the product €% was ocder mjj
The  homomorphism P W = GL(mM) {5 somelimes known as the  canonical representation.

N-B. i €GLan(R) wont usually be Qn orihonormal  refleciion.

be a

ns=s

coxeter matrix.

st =12l , ond

Construckion of +he TS representation : led (w,S) be as above. Wieg I = 1%--4 MY . Led V: p-dimensional veCtor space

with basis €y,-.-, Cn. Define O ssm"\eh“ bilinear form B on V as flows :

B(ei,e)) = -cos(“/m:j) i mij Fiaite
-1 it mi; infinite
Nore B(eiei)= | ond B(ei,©)) €0 Hfoc it).
Define  ai:V >V by oi(v)= v-28lewv)e; looks Ghe reflecting in €i

First  properiies:
* 67 is a linear map
- ei(ev): - e;

Fixed points of i : Fix(d‘;) = iVCV * B(ei,V) =°} =: H; hgpgcp\ane ( dim v\-\)

"Si preenes wne bilinear form : B(oi(E)), sicen) = BCej, ex).
Y 9
B(d‘i(ej),a-:(tk)) H B( 3 -zg(e;’ej)ei, Ry - ZB(ea,tr-)e‘)
- B(e;,ex) + B(Qj’-zg(eile‘_)e.‘\
+ 8( —2eleiejlei, ex) + p( -28(ei )i, - zs(e'.,er.)ei)
= B(e_",ev.) + zcuS(Tr/miv-)(-cu("Imj))
t zces(“'/m-.ﬁ(- cos (“'/mit_)) + 4 (oS (w,miﬁ m(ﬂ,mm) o le:e)
< B(ejlek) - '+(°S(;ln-£ij)cos(%rik) *W-COS( _:I:'I':’) Co)(.l;"‘:;v_) -'B(ejlel‘). J

it (v) = e (i)
= & (v -28(eivel) involution
= v-2BEiv)e —28( e, v-zetea,v)ei)c.'
:v- 2B(eive; — 2n(ei,v)er 4 uplei,v)Bleiei) e

T y- UB(eiv)e: + 48( eiv)el = .

respects

foem

b linear



Prposition 4:2: o) has order mij for an i€ I
ComNary 4.3 : The map Si F> o Rxtends 40 a  homomorphism p: wWo Gitn( R)

prof of 4.2: * if i) , we're done. (an involusion)

* Assume i3) . Led “-l“z span( ®i, €)) . Then ‘.‘(V'.j\ A KT <5 (Vij). so (onsider +he  resStriction of TN v Vij.
- w

case %) wmij finite : The mmatrix repn of Blv;j wer  (eiyej) = ' eas /"")J has der >0 and trvo
LT

ond so is pesitive definite. So after a change -eos(Tlmiz)

of basis, we Qe +he standard inner prduct en R*. W)Ovij
CHOYH

. chonge basis
¢) o siandard
inner produck

angle between @i and ¢j

-cos( M) = cos (- 1r’rﬂij)

(4] w -

v
> angle = mij

w/ B‘Vij

So "“v;j = ihe  of tho normal refleCtion «n Wi and similarly o) ( after change of basis)

v
Upshot: i) lvi; is a mvation by ongle 'mu (> ot ocder ™mj). on vij

Note that Vq"' iz L wev: Blw,w) =0y ye V'q} , VY vy OVij"' (direct since B\\,-.j is +tve def (non degenera&e\).

But 6‘;«'}\\,-‘5‘- = 1d, hence SiSi was oder mij on V, as required.

Summary of idea of prof: Can 4hink about how o and 5 oact on @ and @j. On ¥he orthog- Complement of <ei,€)),
w
o, ond o 0 grvially. And we can represemt  Si9j as & rotation, with angle ;Tj, which has ocder mij-
( \ -\)
case b)Y mij iafinite : Mmatrix  cepn o B‘v;j we  (eije3) = - is  posivive semidefinite, bur nor definive.
R
Calmlare oioj (€)= oi( ei+ 2¢5) = ei + 2(ei+ej) = (siTj)le) = €1 4 2k(ei+e))

Which  clearly  has inginive ocder. So  we're done- D
Coroflany  G.y: ter (WiS) pe a Coxeler  Sysiem. Then elements of § arve pairwise dishinct.

prook : i #9)  (use oio) has order mij, or nodice +hey do different thingy +o €i, say. Differemt wnear maps ) |:|

|  Tneyve  distinct in tne representation , so distinck preimages.

ComMary %:5: Sis) has oder mij in W

Pmo(: Immediate as Gi6; has ocrder wmij.

]

Geometny when m;j = o0

=\
Matdvy  repn  is (" v We have Null ( B‘Vij) = ei*ep) TiIN. Taking  the quorient by  null space,
5\\123 induces @ 4Ave def-  fum on 'I/N.€ 1 dimensional

Noakion: Wi = SSiS;d> sw | Wij T D, /wt'll fecover Qction fowm before.



. 1=l . .
The mabvix  representation of B  when resbvicted 40 Vi) is given by (-\ \) (in basis Tei,e3Y). Hence 8
induces @ 4ve definlte  fem on  °/N ) Which s oae dimensional

te Wit CSSj2 ¥ D | Then Wij (via P)  has the Pllowing properties:

1) Wi acs faithfully on Vi
faithbul:= f g-x:=x Y x€X, theng=@.

2) we have Ovleite)) cajlejrel) = eivej

> T i,% fix N pointwise.

Nole:  winvij= N, HyOUij =N , s nov a very Fruithul viewpoint.
Wit= § oveV : 8(83.«):0\

=t AN T W OV
On Vij, B is represenied by the mawiy (- \\, Ker(8) = WAV = KW OVG.

L4
)

Tdea: Consider  dual yector space Vij* . L(vij, |R) . We have a dual represrentation rv:w,,_., L)
Y Y

wez (w, @) = (w'y), where we Wy, e vyt vevy.
L}
<sy,5)Y ¢
This  is  faithful as i's  duwal s faithful .

want W  give us a GL wap oan V'.j‘, i-e. one A where we ad on Vi

j ond ger a map Vij R

Note +way v-.-l‘ : (span(ei,ej\)* ) Wij = ¢5,5)7 T Do

\t'l:\‘ = ( span( e:,ej\)‘f) Wij by she above representation , wij« WJ“L ) (w)(s) = Llw™v)  whith gives  Onoiner
wmap w'Ye ViJ'*-

Denote by hi*= 11 @(e) =0} , and tet nj*
22 T leCeivey) =0} (=(Vi/*)

Sine Wi; Fixes ®i+ej, the Gdion of Wij on Vi)'

pre serves 2.

Calculating f'( 5i)
P sj (omed  from- sjsind EY
sjuit

4

"
~ —~
o -
‘.~
-~

wer . obvious basis. }no( sure

ket [= 2+

E has  stondard adion of Det QNG on - ieesien oot cange ne

with green/ blug lines  are Suppored
to be equidistont:



Pre Wi = at(v) s (P e = @ (ptw ) ()

f‘(s})(‘f;)(v)z eiv) - 2%i(e)) w;lv) (u
S +zte-J(v) z

‘(’j(v) - 2%l e))‘PJ'(v)

Qj(v) - 2 «;Wv)

- QJ‘(VJ

r‘(sj)(‘fj)(v) =

Dual representation

@) = £ (pwINY)

)

Faith ful ness of Tit's repregentation:
(3 v . *
P W = GL(VvY) given by (p (‘J‘,Wl(

Aove
Foo Si, Si?=o se 8 ':Si. et ) :vv—>B(eLv). Then
f‘(s‘.)(te)(u)= ‘f(f(s;"))(v) T ge(s)lv) = @ (v -2 8lei,Ve;)
T @(v) -2%(ei)eiv)
with  the obvious basis Qi e,
c\
r‘(s:)@;)(v) = «ilv) -Zmi)‘?i(\/)
T i) s (L)
-1 2
sives us (0 |)
PCs)(9)(u) = @lv) - 2 %(ei)i(9)
<
s - 1)
 @j(v) 4 2¢(v) = ( ! not sure where | am gotng werong,

N

Goal: (¥ faithful (& pis 40 s
SisjH;Y
Define i €V® by  @(v) =8(eiv) . Then  &i*:=p*(si) s A
cud SN
q"(‘f) = @ -2¢(e)¥i remember O; Gn jnvolution so P(W")= Pl"") ot
. L Y .
Remember the hyperplane Wtz §eevt | ele) =o}, and odefire the (open)  patfspace  Ci= peev | 7“')7°3,
and c:= ¢ Closure  €:= chamber asseciated +o represemtation.  Finally denote  Cij = CinCj.
Re call oi(v) = v - 2B(ei,v)ei

-z (e) i(v)
Bk'\/\‘}

=t (@)(VY . ()

< ‘P(V) - 2 G(C'I/\‘) ‘?(C;]
2 e( v - 28lenv)e)
2 @ (e Wv))
e (o) g requiced.



Exampe: Mij Finite  : Spqn(‘fi,"!j) =Ez with  Standard  inner product.
e.9. it Wlij =3

e
H; wt
c
3 Sic
s‘,c /1'-'? .
S uj~ =Sy Wt c=qj
55 € iS¢
T;ij;(
=555 5j¢C
on 80 Wt D s 5 fix puisiwise.
kg
mj; infinite s 2d  conaining @i, <.
¢zcij
sinjt
sisih
gar ST 2
+
QS‘ H' 9 555 tevial
This  reads a litHe funny. Basically -
Fisite: @ On n?ij l-\h*l the wo elements € and S) fix the gpace pointwise
Y,
infieiter ® on ‘Qo Hn¥ , Sioands) ack trivially (greserves twe space)
Definition: Let G be a grup acting on a set TT. Cecw s prefundamental foc G it ¥ geaq, 96 nC#P > g:1€G

Ex : Ci is a prefundamental Hor Wi = <SiY  acking on v

Cij is prefundamental for  Wij.

This  all  feels intuitive but ils important 4o Know W haks gong on. Ci:= T we V¥ e o}. Foe 5 ackag
on Ci, (si-%)(e) = q'(p(s;")e.') = ¢(e;(e)) = P(-ei) = -w(ei)co . pand sine $;2ce, Y weWw,
wCan€ +¢ » w=e. So Ci i prefundamental fox w:.

Simi lar logic  Shows Yhe second staiement

Theorem %.b (Tits) The data (w,S, 1Ci})  saristies properry P: 4 any wew, i€l , either wC CCi, o

wC © $iCi. Moreover, in second case, l.‘( siw) = Ls(w)-1.

Comliary 4% (€52) C s prefundamentay for W > P¥ is faithful



Key : we already wave twar (Wi, %id} , T€LGY)  sanskies  prperty P from our pictures

Strategy:  Pa: (P taue for all W wish Lw =n)
Qn:= ( Y wew with Qwlzn, izj, I meEWij st wC cmCij and Luww)z 2w -2' () )
wet 50,5

proof of theorem: Po and Qo hold v . Want 4o shew 0) (Pa Ond Qa) D Past, and b) (Patr 0nd @n) 3 @nn.

% Suppose £€(w) = nel, and Si€S. Then w x SjW' for  some Sje5 , €(w')=n.

* iF i=): oapply Pa & w'. Musi have W'CCC; B Siw'CcsiCi oand eswlzn v,

| 1If '€ c 5 Ci instead, then .e(s.'w'3 = (’,s(w‘) 1 U(w) = n-1l 4

* F i#j: appy Qn ® w'. Then I M EW; st w'C <€ uuC;  0nd 0Ca'w') = Q(w)- 2'Ca) . Two possibi livies:

() sjmcij €€ % wCeCi, o
W) sjmc;j € sici 3 we ¢ s:Ci |

Remember M s @ word in Siand 55, and  definitel CijcC ond <Cj wil have sjMCij € Ci or S;Ci pecause
emem ), Y il ) ) ]

Cij ¢ Ci and  Cy and  ¢iCi are Separated only by the half space

Hi.

vow if sjlucij)eci, sjlw'c)e s;(ucij) € ci @ wCCCi. Similarly g€ cond possibility

wWord  length A (id)? Q(siw) = £(sisjw!) ¢ e(sisja) + Q(m'w).
€ g'Csim) -1t QwY)-2lal ¢ g(w) -\

2 a t Must be equal (cant differ by moe sman \)

B a starts with Sj, then £'(Sjm) € g(m), and  we get thar + € 0w') -2 =z g(w) -

§ 4 stare with Si, then  L(sja) = e(a) +1, and o % T Qlw') = glw) 1.

Qsiw) ¢ 2(w) -1. sur 2(s:w) cannot differ fom L(w) by moe +hant. So L(siw) = 2w\ -1,

So in total we have
b)  Suppose  Q(w) =z wmer, i4j. IF wC CCij, 4hen dome (aw=0. Assume not. wlog  wC ¢Ci . Awply Pan,
wC c5;C, and L(siw)=
L0siw) ~2%v) + @(v'siw) . Then wC € SivCij and

2w) -1. Apply Qn o SiW | g I veWij sk, siwCculij oand

Qiw) = 1+ @(siw) = 42 (v) +g(v'siw)
% £(sv) 4 0l Giv) ' w) v Uw)

Bt of +heSe anen  musk be equalities So +hat L0EN') = ow) - 2'(siv).

Change in  potation: replace  C with C®, C with C b agree with notarion in  literawrce

4.9. Definition:  4he Ti¢s come of (wWiS) s wlé’w wC c y*

4.10  Example

1) Dan n Finite, tnen V¥ e E? , Ond +he Tits come s an of [E.
remember +ahing tlosure

2) Peo V¥ oz vt Tiks ome i T @ vt | @leive) e} u o)

and iwe  interior {5 e open half space  bounded by T and  containing 2.

Can see this fom pictures.



B. Finite Coxeter Giroups
5.1 DeFinition : let (wis) be a Ccoxeter sysiem. Then (W,5) s reducible  if Sz S'LIS" such  twar mij =2
v Si€s', sjes* | e SiSj + 5%  is arel in w ¥ 5 €S, sjesh
(w,85) is icreducivie it % nor reducibe.
5.2. Remark: € (W,3)  reducibie, then W = <SP x¢<sH
But W Con be ifreducible and SVl SPlit as o pwoduct: 9. Dzcae) ¥ Daw % Cz,
5.3.  Theorem: Lev (w;s) be irceducible and ISl =n.  Then tae following  Qre equivaient.
D W s a geometde reflection grup on  S"' generated by S = %Y ier, and the ser of reflections in
todimension \  are  faces 1FiY; ey OF o  Simplex in S™' st F; and Fj  meet at an  ange  "/mij.
(i) B is posirive definise
() W s Binite
Pnof: /n Davis  Section b: uses  Thm .11
As an aside, we have Similar theorems  for Euclidean (B positive - semidefinite of Corank \), and Hyper bolic -
Tf W is a finite Coxeter group  wirh Is\=n, +then V* e EN ; ond C ( fumery €) s @ clored Euckdean
Simplicial  tone with  boundary  given by Hyperplanes.
7 C° is prefundamental for W-
Recal  cormlary 43 (E52) which says WwEW +then if wC®NC® $g, then w=e. TWs jmplies i X€C°,
then  the orbit Wa  has  |wl points  (4wey an nave 4o be differem)
5-4. Definition tet  (W,8) be Ffinite. The  Coxeter polytope For W is  the Coavex hull of the W orbit on
\Y of a peim x € C°.
These are convex Euclidean polutopes bui  are not in  general reguiar il say WX :vx, then
v'wt = £
5.5 Exomple Do i ¥ vier € v'WC°nC° 3¢
\ T
¢ So vi'w = e D v=W-
<
Si¢ s2C
S*
s, %2
sia = s Wt
SS*
TS X c
S S
8,8, C b
SiS2 S
=S85 *
Rem: the |- sheleton is  isomophic  as @ Monmetric  graph to  Coyg(w).



Forms B associared 4o ireducible  coxeter systems can be  classified by graphs:  This lead to  Coxeter's
Pinive  coxerer groups-

classification of

B.b. Definition

A coxeter - Pynkin  diagram T is a Simple labened  graph with  finite  verrex set V(T) = 5= $Siljex and
edge labels T3, where mMi§%3 o mj o
5.3 Lkemma . There is a |-

Correspondence  between  coxeter sysiem  (W,S) and  Coxeter ~Dynhin diagrams -
proof: e gwe a  bijeciion

(w,$)  coxerer sysvem &> T coxeter diagram

S ¢ > \(T)

mic ompis2 ¢ > no edge between s

5j

m'.j 713,=°. N

L 2
F

5.8 Notation: we omit edge \abels  ™i;T 3 for  resy of +he (ourse , IS

o $; 1S jus represented by s s
Under the above bijection,  denocte \mage of T by (\n(l‘), v(f)) , o (wir), s).
5.9 Remark : many  masematicians  use a  diff erent wnvenlion  Where S mijre

5:10. Theorem  (Coxeter 1930s)  (Classification of Finire Coxerer  Groups)

W.S)  gives rise 4o a finite Coxeter group W (D (W) = (wr),ur) g T a disoint

Union Of
a dfinite  number of the following gaphs:
Ah (“’l" *———o——o cee °
Bn( n»2) . .
n Vertices
Dn (VI %, 4)
12 (m) m mv,5
Fy ¥
H3 — .
Hy 5



€3
€3
Sl Remark ' : [ = ([, UT, precisely when [ w(T) ,u(T)) is reducible-

8.12 gxamples:

m: 3 w(Az)
M=z 4 w (82)
™m
Dim w: ¢<si,S2 Vs =52 = (sis2)™M=eD s‘.—__;z m 5 w(TI20m)
Rn-vCnod 2038 L .., M=l gertices, +hen w(T) T sp-u.

Check umolrces
. 1 3
W(An) = <5, snn sitze, (sisind®ze, (sisp:e omerwise  (i-) »2) Y

Given a  Coxeter oliagram [, lev = V(T)
oF  +the vertices TES.

, and ter Tr be the  fuu subgraph of T spanned by a Subse

Full subgraph : it ty, t2 €T, and in T 3 an edge & —tz, anenin U1 e have +he same lovelled edge
(induced  gubgraph)

Then (WCTt),T) is a coxewer system

e.9. | “ T: 1s.t5, then Tg: .
s+ w ! s ¢
5. 132 Definition: it you +take (w,$) o Coxeter sysiem , TES, +hen 4ne parabolic Subgroup W7 of W is

Wt = <T> I8 T=@, ten Sfix W¢ = el (the tdvial grour).

5.1y Lemma: it (w,5) is a Coxeter system, and Wr, (w(rf1),T) a5 defined above 4 some subset TSS,
then W(Ty) T Wr.

proof: if Isl=n, and V be an n-dimensional vectn space with basis es, S€S- Then let p: W > GL(V) be

the Ti*s  representation with Symmetric bilinear form ®. Le¢ Giqy be e Subgroup of GLCV) which

Stabilizes (as a subspace) Vt:= span % Qe - xeT} (nov  Rlementwise)
Now  (w(Tq),T) has 'S own Tits representation of the form By with veckhr space V' iz < el [teTd.
Then V! — v, ey ™ et a vectr space inclusion.

(d think of  mmatrix

By narurality of +the Tids cepresentation (ie. Bly = 31) we get O (ommutative diagram

P
wi(Tq) — aL(v')
universal property T resericting v
of a group I - U >’u-



Top arow injection by
515 Definition: if a parabolic Subgroup is Finite, we call

516 Comlary:  Combining Theorem 5.10  with

by

pnn;luﬁm {
Wy = G,

lve

(p* is Boirnul) r,.,u,.., vestvicions are just injections.

Cor 4.3 = IeH armw is an injeckion, Which gives W(rTs) s wy as cequired.

i+ a Spherical Subgroup

temma 514, we see +har QU spwerical subgroups tan be obhained

observing T fr (w,$)

5.13. Example: (3,3,3) - thangle  group

L 3
s: Us,t,u)

Coxeter graph

(w,$) has spherical  subgroups:

Wg ,
Ws, We, Wu  type A,

Wis,ey, Witms, Wis,uy oF type Az

5.13 Thearem: (w,s)  Coxeter System. Then

@ (wy,T) is auo a Coxeter system ¥V TES.

®) f oan T <s, weEWr , Lr(w) = €s(w), and any reduced wod for W in S, .Sk saksfies Si€T Vi

@ @ 1,7 €S, then WrOwWp = Wrnte, and < W, W'Y = Wrorr,

@ The bjecion T = Wr ; Tsubsers Tes} — 1 parabotic subgroups of W) preserves  the partial ordering on both Sets
given by inclusion.

5:19: lemma : For (w,3) a Coxeter system, weW, then 3 Ssubse+ S(w) €S Such  shat given any reduced

S(W) = ? Svy ooy Sk&
no+ its word representation.

word \Si--- Sk)  representing  w,

ire. S(w) depends only on the element W and

be a minimal lengh counerexample, ie. W=S,... Sk Tt,--. bR Such that Sit €S and
(ser-.5%) 15 also reduced 4or v.

S(v) ¢ S t.,..., tr}

proof - bh tontradiction: Ler w

ist,---, skl # 2 €, b, Then w3 S,V where
ws Siby--tic te . So Vv satisfies

By +we exchange condition,

€s (s\w) < 2(w)  so 3 | s.t.

i b} JPRTEN skl = stv) ¢ 3 h,m,ek} bS""e assumption of @ minimal

Since  Ls(v) < Cs(w), % follows thae
\ength (ounterexample-

, 508 € L, so §Suysed € Tk, bed

on w' =z Sk--Sv, we get 1 Sk, ...
is,,...,Sv.B = 1 b, ted,  Which is a contradiction

LTI TS BRI K NN 1 S

lengn counterexample. |:|

B\tj Same ar gument
By Symmety of argument,
\3 assumption of a minimal



Proof  of lheovem 5.18:
@ follows fom Lemma S (wr ¥ w(ry))
delefion Condition
) use temma 319 . U weWT, then S(w) CT .5 by lemma, it follows awar if (s,--.,S¢) is a reduced

word  for W, +hen each Si €T, So Ls(w) * &7lw).

© clearly Wrnr € WrOWr | g, ceverse indusion, WTOWT' € Wratih  Then by lemma 5.3, if
WE WTNWit, then stw) ¢ T and stw) CT', ¢ stw) C TNT ( sewy s umaque\ and s W € Wrar',

The second part < Wi, Wr'> = WruT! is an exercise .
(d) Suffices & show if T'© T, rhen W'’ C W1 (stict). Then fom €) , we can  take
Waatr! = Wz wenwe

So Wr' C wr. let seT, sér. By lemma 519, s(s) = 15}, So any reduced word TYepresenbing S oaly

involves S , which ¢ T. So S¢ Wr'y byt Sewy; ® Wrp Cwr (strich)
5.20 Definition: Given a (ox. System (w,s), te+ S i Cs @ Wris SPhericq\5

5.21 Remark = S cepends on  (W,5), pur Anis is nor reflecred in +he  hokakion.

6. The Basic Construction

G-l Definition: An (abstract)  Simplicial Complex IS a  (possibly infinite) Set V - +he yertex el , and a cohedtion X
of finite subsets of V such +wat

W W) ex vy veV

(1) If AeX and 4 €A, then A'E€EX.

Pn element A €X is caled an (abstract) simpiex. TFf A' S48, then A' is a face of A- Define dim (Q) = 1Al -1,

and A is a K- simplex it dim (Q) =K.

A o- rimpiex is @ single vertex vl A 1 -Simplex we caui an edge (o pair Tv,w)).
V)

The ®-skeleton s xm s a and  dim(X) = wax 1dim(a) : A€ x5

A€X
dim(a) € K )

It dm(XY <%, jhen we say X is Pinite dimensional.

The standard  n- simplex A" is ine convex hull of +he standard basis  ei,..., Ean in R™
€9 in R3:
To an awsteact simplicial  (omplex, Wwe ctan associate a " Simplicial cell complex"

n - simplex A >  standard n  simplex

A' aface of A F > glue oaccordingly,



N =VIX) 7 R yeviex se ok X,

A <V an abstract simpiex if ¢ X

A span a siandard simplex

Pim of this section:  define +he basic (onstuction U of (W,5) a coxerer system.

6-2- Definition: it (w,s) a Cox- System , and X G (onnected , HausdorfF  topological space , a mifror

Stmcture on X over S is a family (Xs)ses of closed, nonempty Subsets of X. X is called a microred

space over S, and Xs is the S-wmiror of X.

0.3 Remark: There is a mone general  definition for @ any  goup and I indexing  Families of Subgrups
(see  Dpavis 5.))

U(W,X) 15 obtained by ging (Wl copies oF X olong mifrocs

6-4Y. Definition: if (w)S) cox- systewr oand X A mirrored space over S, then +he nerve of x is denoved

N(X) ond is an abstract  simplicial complex Wwith Vverrex set S and TS5 35 a simpex ilf t‘:-, e 3¢
6.5 Examples:

@ X = cone § os |S€5) ie. star goph with valence Is|

Xs = fosl.
Xucu ‘s Xs
eg. ¢ S-= s, t,9), juen and  Nerve: ue *s
‘h L4
X t
@ x-a , with Isl= ntl. Then we have et Sz skl
ISl codimension one faces , lavelied by S
Xs % Nerve -
fas: ses), x5 = A € Sv*
Xu u
) P"  convex poiytope in X" . when n%2, then

Tridier faces , if i3] then Fi0F ¢ (mi=o)
oo mee} at an angle  between +them 11" mij,  miyue,
and el mii =l - Then (w,s) lisomewny snup)

S the coxeter  System  with  watdx  [mijl . Then

Yake X = P" , ond Xs; = F;.
XS.' = X ?

mirrored  spaces  are the  half plaves.



03[03.

) € S V¥ ime Chamber (closed jntersection o halt saces fom hsPe'P\anCS) assoclared to Ti¥s  representation

We take H;' dual wyperplane  fixed by i := f“( $i) . Then toke X =C, Xg; © cowt.

8) If W if finite, VPews E", omdg  C = fver™ | <v,ey %0 Vil. e acct , Coxever
polykope is  Wx ,the orbit. Tmen +ake X = CO Coverer polytope, and Xs; = XOH; (K nyperprane)
in new nov-
tg. Do W ¢ w' remember we deFfined 9;:= B(ey,-) = ¢ei,»
. amd ¢z Twevt: @(enol
N ser T RVEV £ CuyTIene) by vt e E'
S %s, Xse

s fve‘l-‘ <v,e;77,s}

s €= 0C =% VeV : ¢y edne WY

fr e ey of tWis  section, (Wi3) G5 a Cox syem, X mirrored gpace over S, ang I xeX st 1 ¢ VX

Tnen define ¥ xeX q subset S(x) : 1SES: xe€XsY) (doat conbuse wirh S(w) from  section s)

6.-6. Examples :

¢ xd {eos: ses}
In 6.5(D, then S(x) = i

15} *: S5

R.q-
9 Xs Yt
°
In 6.5 (2), 4hen  s(¥) = ¢ iF xeX
19s x¢ NDT y Xy %
. ce1 \
= 1S
Can be Jus¥ ghe or two 5(y) {5y
elts. depehding on where S(x): Hul

on  SimpleX Xg it \ies

62 Definition Consider W s o topologital spoce wirth  discrete topology , and W XX with product topology. Then the
basit  wnasbmchen s the  topologeal space  with  quebent {opology

Ulw,X) = \N*X/~ ,

where  (w,x) ~lw,x') @ %x=w' and w'w' € Wy, — parabolic Subgroup of W Wseyy (5 & s

Write Cw,x) £« equivalene cass of  (w,x) in  ULWX)

1 %€EXs, wmen SES(x) , so  (w,x) ~ (ws,x) since W'ws =5 € \Ws(x) . Hence Cw,x] (onYains
at rost  (w,2)  and (ws,2).

6.8. Definition : write WX fr Sws x X in W(w,X) | #or any weW. Then wX s caled a
chamber of WIW,X). The fundamental chamber s @X, whith we idenity with X. Hence wX and
wsX  are gued / denkified along Xs.

wX = W} XX under ~, and wsX = fwsd xx under ~- And So l’!’ our previoas Statlemen, (w,%) € wX and
(ws,n) € wsX , ond ¢ x€Xs, (wxV~ (ws,x) since w'ws =5 € Wse, g0 w¥ ond wsX are jdentified

along Xg



6-9- Llemma: The Cayley graph’
For X G5 b5 (D), wp 4o subdivision Ulw¥) i cayslw).

proof = et aeX. tnem i ¢ {eos Isest , we have Weex) = Wg = 1e8,  so (w,2) ~(w,=')

HE wtw'e Teb i o weE w', So Cw,x1 = § (w,)}. Otherwise x€ 9§ Og: sesk , Say x=Ss fFor
Some SES. Tnen Ws(x) = \N“) = Ve Sinke § is Gn iavolution.  Hence (w,n) ~ ( w',u‘) W w'w'e te,sy
F w=nw' or w! = ws. I.e. Cw,2) = i(w.!),(ws.l)s.

Therebre  in W W,X), we gue wX ond wsX awong Xs * 2953, and nete are all e gluings -
If we lavel the Star poinks 8f WX by w, +hen this gives the Cayley graph Cays (W), ond the

edges ave Subdivided by 4he wirs s , and mircor  labels «> edge lavelss n  Coy g(w).

l,.,mewic-'~
s
Cq [ = i t , e (3,3,3) kriongle goup, and X a3 in 6.5 (1), 4nen.
t “w
L 23 ‘s
I.e. X = ‘¢ Xs
A SN
Tu
SusK = usuX
6-\0. Definition - For X the mirroced space in exompte 6.5 () {.e. X & Simplex with codlimension |
faces  §0s ) seSy . Then  W(W,X) i caved ime  Coxeter  complex.
6.12  Example: Coxeter complex o (3,3,3) - tciang\e group:
Tf =« € XgOXk , smen Wezy = SSit> % pp . s ¥ weW, wX is glued bt wX (tdvialy), wsX weX,

wstX, wesX and wses X ar € XsOXt.

Get picture: U(W,X) @« tesselakion of [E? by  triangles:

SESX
X Xy
[T
o0 0 [ N )
e ukur

glue e.g. X ' uh aleng
Xu




6.l Remark: e W is an jrreducible  pinite  (Coxeter group , +hen Coxeter  complex can be (dentified with
the  tesselation of the spwere by spnerical  simplices induced by W.

nonexaminabte:

. a . .
IF w s affine , +then 3 an affire suospace E cv g'wen by slicing  across  the inwrdr o the Tits cone.

Then W acks sn € by isomerdes, and  coxeter Complex «>  wsselation o E" given by intersecting € with

the interior  of the Mty (one.

6.13. Lemma: UCW,X) is a (onnected topological space

PP U wX) has a quotient topology > Wis  only Subsets that are both  open and closed are ¢ and ULWX).

Suppose Ac uw,x) s open ( closed resp.).  Then by dfn of quotient +opology, A is open € AN wX

is open VY wew.
let A<D, and assume +had A is  both open ond closed.  Siace X is (onnected, > ANWX T wx o = @

To see +his, consider tnat AS, dhe Complement of A , isaiso open and closed.  Tf
o disjoind union OF nonemphy OpEN sets, A UAS, which vislates 4he Connectedness.

AcwX (sid), so AODwWX @,

then this say3s  wX can be written as

. V)
So 4hen considering this ¥ weW, > A is a gnien of chambens, e, Az VX, gtvsw ( under our

Atg). For veV, seS, 3 xeXs #0 (fom woy back) , So +hat  Cvs,x) = Cv,%) ((v'es = s€ Wsem).

assumption

Hence 3 an open neighbourhood in A a+ =« intersedting NS X. Hence, AnusX £, and so vs€EV 3 NSc\.
Bt <S> =w, > V=w, D A= u(w,X). So the only open omd closed subsets of  U(W,X) aqre @

and  U(WX) jesele. |:|

6-14. Definition U(W,X) is said & be locally finite F ¥ Cwix) € W(W,X) , +nere is an open nhood

Which  meets only  Finitely  many Chambers.
6.15. Examples

* Cayw(s) (Ex. 6.9 as  u(w,x) s locally finite

* The (oxeter Complex ( definition ©-1) is no* necessarily locally Finite. s

Example 6€.12 s, butr (wlT),s) given by T below is not: r =

To see his, consider +that i % €XsOXu  ihen Wso) T Do, so 3 nfinively  many  Chambers WX , wWeE <s5,uw),

glued o ex av (e,x),
Wsix) = Doo |, looks €ke  wsususu:-::

Lsx sEX sususu-- -
bx SX
X sux
So we gwe  usXk to usuX &0 wsus ¥
ux olong 'S 3 SR
" v infinitel
vlvm:y t:tmhu and wX ASU = A say, them % nrersech
usx, uxX, ususy... .
* ol of Mnese  (tnatinitely wwavy) Chombers.

SuX, susX, susuy,...



C.lb. Llemma: The
D Ulw, XY u tocly Finive
(v) ¥ xex,
() ¥ T1¢cs

following  are equivalent:

Wsex) is finite

such twat W is infinive, then t?‘x'- 0.

Pf:  Clearly (D &> (3): Remember thas 30 = ises

+€Xsy. 5o ik (2) holds, 4nen ¥ 3x € O%Xt, iven
Tcs(x), and wr S Wsex) 2 Wstx)  jafinite.  Then if (3) holds, f =x€X, then any set of wirrors tXs}
TCS coniniag X wust have Wr Faite . In paialar, e set (X of all  mivors  Containiag x Wil hove Wstx) Fiaire.
(1) = (3):

Suppose  thar (3) does not hod: Then 3 =« €X

with Ws(x) infinite . So
Chambers are  identified

at  Cex), so  ulw)X)

in UWX),  an infinite
number of by dfn s not locally Finite. So (1) does not hold if
(3 does ner hod.

¥ 3 does hot hod, +hen

N
teT

JT€S s.t Wr infinite

(untess all finite n whith case (V) auko Mak colly bwe)  with

Xe #8503 we D %e. gw stde TseS: 1€ Xsh o corainy we can bulk wp T (if necessany ) v incude
al of St (by dfn o s, TSS). Then TSS() and WT jafinite D WS infinite.

() 3 () R each Cw,x) € U(WX), I on

open  neighbourhood
where w'w' € Ws(x)

(3enemu, true). But o (2) npeds,
chambers.  So  U(W)X) 18

W of Cwix] only iniersecting
then \Wsool ¢ o0

locally finite and (1) liods.

chambers w'X
; So W only intersecys a
Pinite  number  of

Remare thar W acts an  UlWX) by

]

homeo morphisms  Via a [left Gction on W, X:

w' - (W,i‘ = ( W"Wl,)

This  Uearty preserves 1he equivaience  relation, So

we get an adion en Ul w,x).
If

-\ - - -
Cwixl = Cvix), 4men w™'v € Wstx).  So applying w', note that (w'w) (w'v) : w )M wtv st € Wy,
So ihat (w'w,%] = Cw'v,x]

(Remll Definition 13 on Stvct  Pundamenal domain  for aax).

613 lemma: The fundamental chamber i3 a stick fundamental domain o WA Ulw,X) =2 uU(w,x)/w X

Moreover,  we have w' (wX) = w'wX , which gves a dransitive, free Qtisn of W on the set of
Cham bérs ofF  Ulw,x). S0 J only element sending wX o WX
s e since W has a free adion
W Ul wix) } is a bijection a4 pine x g YUXs (byass. x exists)
W —_———wX

618 Lemma: g“bw([w,xj) = 3 w'ew ' w'lw'w € Ws(x)} Just by ofn of stab = W\N;(,)'N.l

By dfn, stab  ( Cw¥)) = i vew : y- [wrxd = cwr"ﬂ

= 3 vewW: [vw,z2) : Conxl}

: by dfn of attion
: T ovew ¢ wlvw € Ws(x) 5 by dfn of equivalence  relarion



Wit = WwWseyw™, First show wWse) w' ¢ stab. Say w & Wgxn). Then %€ Xu, and So Consider : wuw'.

Then  Cyw,x): Cwuwlw,xl: Cwwt), gna wue SO), Cwoed= CuwwsTl so s w € shab.

Plso by dfn, Vye stab, wl'vw € Wie), 5 wlShabw € Wso) 65 stab S W Wsey W

6-19 Lemma: The space U(W)X) is Hausdorff.

proof: et g Cwx) € U(W,X) , Wy= Staby ( [w,x)) . Then 4o x€ Ux CX an open neighbourhood ,

mircors ave closed, Wn is open and
Vs oy (wa\YXs)
Y 9 xf xs aclion of W  +akes oen to open

is open fn UlWXY. IF y'= Cwh2'] s such  thae y+ 9y, +hen we can  choose Ux and Ux' smalt enough

to have V\’ nvy‘ ¥ d . D

3
Es r= '—1 then X =
s ) Xg ke SR ,e:x
Ux
sX ix
It y= [ 45,23,  amen Wy = s we (#5)7 = ts we st
9': (es, ') : le, s} by direct Calculation using s(9)= ¢ (lies in ¥e)

6-20 Definition : if G s a discrere group, and Y s a Hausdosff space, then an adion by  homeomorphisms Gy

s properly discontinuous if

G) Y6 i Wawdortt

(W) v yevy, Gy = Stab gly) is Finive

Gi) v ye, 3 an open nhood Uy of ¥ st Gy - Uy = Uy (srabilizes opew aheed of 3, bur nev  hecessarily yo‘mm'\se)
and glUynuy=o v 94 Gy.

G2l lemma: The W acfion on U(WX) is poperly discontinuous iff  Wscx) are sphevical (Finite) Y x EX.
‘\A(WIX)/\N ~ %

proot: &) () and (v ore immediare by 6.18, 6\ s (w3y Wiog we'll show i & Ce,x). Then
3 . ‘“(Wlx) /w\_.x
.= 0 Xs () and (i)
Ny Ween ( X\ g ) and X oy as. oF ugusdorEE

and  Staby, (Cw,21) = Wi
Pom 6.19  sakisfies Wy Vy = Vy, and  wly OVy = 6 ¥ we W\ Wse.

(®) part (i) of definirion 6.20 says +that stab,, (Cw) = WWsey W' (lemma 6.18) is  Finite. Bwi¢

this s finite, then so is Wgx) (they're conjugate and so have the same  cardinality.



¥ The Davis Complex
Recat S = 3Tss : Wris spherical (finite) } 96 wg = el
3.0 Remark: Tn iy section, Obstaed  simpncial  Gomplexes do nob  have @ simplex.
3.1 Definition: The nerve of (Ww,S) demoved  L(w,S), is an abstact simplictal complex with  veriex set S and
Simplex  set S\?ﬁ} it Wt spherical, tnen ¢4P ST D Wp spherical so P ¢ g \i¢}
1.2 Exawmples
r Ll win), s(n)
1 s 00 ¢ = = 1% si?t%} and
G— . ; ’
s .
Ts,t3 ?’ =3 b.c. Wgs,es Was infinite ader (4 D.g)
2 3 s % the gmph s not a Finite bype 9mph,
2 ; ;_{ . and s wmus generale (13,4,4%) an infinite
emphy iatenos
+ " “ 4 Coxeter group
s Y
©.5) remeémper  no edge petween Siand 3; says
u
s t Tl tnterter +wat (S"Sj)’ﬂ,- This 5 A3,  wwmich 1S onQ of
) sur  Finite  coxerer groups.
u
3) - .
P—— °
H t [
S
wa Dp x(
V] gz S1U S g mjze ¥ SiES, SjETy, L(w,5) = L(w,,S)) U Llw,s:)
then 14 W: = <S> , is=y2.
%3. Definition: Given an abstmct  simplicial  complex X, it's bancenbic  Subdivision is the a.s.c. X' with  vertex
set X , and simplex set X' = 1 14.,...,ae} Al ca,, v s ...spt}
a fa3
see  foc ex Owmple
29. x= lamw,c) Then. 19} ¢ iu,c)siﬂ;b:d
Eael locd eath incuded guy 13 @ foe
b c A ok tie next,; and we do
all  gossibilidies.
simplex  Se¥ of X - 1}, b\,id, 503 ey ¥ gas

fand, Tud, 1l
iq'b, C}



3-4. Definition: The chamber K of (W,S) is the Cone on the bLawcentdc subdivisiosn L' of the nerve L = L(w,S).
Ler KsgC K be the star in L' of the wvertex S ks = U o | e label e cone point "B

.
G‘PCL'
S€ d‘p \
union over all simplices S p

in the Roanycentdic subdivision
[}

of the wewe L(w;9), U,

3.5 €xamples ( £rom 3.¢)

L'¢w,s) =o' K where s is G verkex in op
1) N .
s 3
2) 35 [N s
Laking dwe wne Pills @t in t o 2- simplex
fe,ud
15,4y
tug
3) $s3 LERRY Sey $s§ K5 NS ke Sa
Pr——C—)
¢
Ou uku

3.-6- Remoavks:

* K is connected and Hausdorff ,  So {Rs} s a4 miror souckure on K.

* K s the a.s-c.  Flag(S) [ twiak of S as a poset with inclusion)

* @ i (ontained in o miccor we weed some  point x ¢ UXs & wme basic  constmction o nok be degenerale

* In all our examples, Ko i 1 -dimensional, bui this IS nor alwags +he case.
48 (emma: o wirored space X For  (wis)  sadisties  Wgeo finite  ¥xex & NI < Llw,S)
N /\ N
Prwf:(:))l,eq. $ti, teS be a simplex in NOX) . Then 3 2e N Xy , se \Nh_,,_.,uj ¢ Wew) is finte,
izl

0 $4,-,ted € S

So NO) € L(wi®)

)y D It-0% kY IS @ simplex in Llw.s).

(ass)
(€) e+t = ¢ t‘;\T ¥e = T & a simplex n N 2 T s asimplex in L(w,S) ® Te€S = Wr = Wga

]

is Finite.

Tor  ihe  reverse  jmpli@tion, really we wark to  say that N(X) € L(wS) D Wse) is Finite.  New
8 % § YV X, wmen we wnow amar S0 =6, and WG € 3o W0 is fine.  Now  suppose that
% € RNg foc seme S. Then in fact x€ sre\SC'l) Xs , and so S(X) s o simplex in N(X) ® 5(x) is a

simplex  in L(W,s)  (y assumption) 2 s(1) € f, =  Wseo s finile

]

W 6-4. Definition: iF (W)S) cox- sys\em ond X a4 mirrored space over S, then +he nerve of X is denored
reca

N(X) ond s an abstract  simplicial complex With Vertex set S and TS5 is a simpiex iff ,‘21 Xe 3¢



3.9 Conlany: Kk saksfies N(K) = LIWS) | s Wew) is finire V xek  (s3)

Gieneral  dea: you  ‘take (W;S‘), and define the Newe o (W, 5), © be Hhe abs. Simp. Compl.

L(w)5)  with venex set S and  Simplex set
oo Lws) o get  L'(WS), and hen toke the teae

call  the chamber of (W,5) , and denote W by k. wWe can define & wnirror shuctuce
ond gives us  s-wircer Ks.  Now we ‘want

T TES : Wr spherical}. we can do bamycenbic Subdivision
on L'. Lavel cone point @. Twis space we
on k by [ooking ai

the (Amglicial) star on  Ratn wertexr s, which s closed
£ thiat  about the newe of K. E.9. take K ko be:

Then ouf vertex Set s 1 s.t3, and  we

see  thar KsO ke, kshka, kunke are all

Nonempty and  KsNkeOEy is emphy . So we

recover  our oria'mal nene :

pact follows Qs a (orllany of *he \emmaq.

This s essenl-inllj jusy  Rvesing  the constwction.  The  second

310 Definiion: The Davis Complex Z(WiS) = U(W,K).

30 Comlay : Z(w,S) is  connected, Hausdorff, locally finlke , and W acis properly discontinuowsly on Z with

quotient K . Al point stabilizers are (onjugaies of Spwerical Subgroups of W

Fllows  from  lemmas 6.\, 611, ond b-2\. 4+ fad swat W) s fiaike ¥ xel.

i-e-  so all pott  stavivaes are  flawte

312 Examples :

06 —

S t
L —

S t
v $s§ 5% st

e —

[
K S b 3
= (redmwing)
ks LY
85§ ks AT g, 1§
3515
3
—
Sk w

Z(w,3)

stk 7YY

—
stsk = tstK



Do» - —
s Y
8 . .
H t
ll
] °
S X
K ks kt
s x
‘} -—
Ks ¢ ki
¢
2 (w,)S) =U(Ww)X) . . - o °
o - — ) — ) —
(13 k sk stk
3) W e (3,3%3) triang\e gwup, twen s (w,s) is the pawmeenidc  subdivision OF e diling

of B* by  boangles

Remaoark 313 ¥ W is &  Eudidean of  hyperlbelit geomebic wflection  gwup, twen T(W,9) i 1we Loy (entric

subdivision of  ne Conesponding  tesielation ok E" o W" vy P.

¥ W i finite (spwericat)  dnen  E(w,S) Can be idenvified  with the Bawcentdc  Suvdiviston o ¥he

Qssoci ated Coxeter polyrope

The vemainder of the Course {8 devoved +o proving +he  following ¥heorem: Exampie: Fa—

W= StS. tnen

The  Davis (omplex T = S(W,8) s coniractivle. In(w) = 1548

Thm 304
out(w) = ¢
Definition 3:1S:  Tor weW, define Talw) = 1 ses | 2g(ws) ¢ Ly} b€. WS TSkss= st
Wt = Sksk = tste = €S

ow (W) = i seS | Qs(ws) » Qs(W\B
(\Qng\*\ shortened)

Remare 3o
e Rslws) = Lg(w) t1,  so s = Inlw)u out(w).

e It Qslws) ¢ Q2 (w), then & ( Sy, ---,5¢) a reduced word for w, We Whave that by € on (ws)™

o W' S sp--. §; oS D W Sy ?; ... Sk S.

(5"/"'/5‘) a ceduced word Ao¢ w'. So Ls(w) = Q;(w")’

Noe Hhat it (S,--.S¢) @  ceduced word foc W, then
25(ws) ¢ Ls(w), then Lg(sw™) ¢ Qs(w),

In parsuar Os(ws) = Ls((wd?) = Li(s~w'): Glsw?). pNow IF
o bg (C) 3 i1oset \N-‘ < SSe¢-.. e'u e Sy D W=z og, ... e-‘ S X

So  ocwally, TIn(w) = UseS | 3 areduced word for w ending in sy w

The above Says  that  TIn(w) ¢ . gw clearly 1§ 3 reduced woed S W ending \a S, +hen Lg(ws) < @s(w),

so (B & Tp(w) D  TInlwy =),



finite word
‘nive lek mulliplying

lemma 3:13:  (w,3) Coxeter system . Suppose I wo €W such thar  Lg(swe) < s(we) V SES. Tnen W is Finite.

of:  Suppose W is infraite, and et 5 = CSiyeSie) be a possibly infinite  sequence of elements in S Let
Sio: (siy..,s) be On lnitial subsequence in veverse, and asume each  §; is reduced. Wwe assume Foc

contradiCtion’s sake twatr I we €W s t- Qs(swc) ¢ Qs(wo) W s€S.
Claim: Wo Was a reduced eypression Starting  Wwith  Si Vi,

Assuming the  Claim , we get  thar ¥ ueWw, 2(wo) = 2w + Luw'we)

because e took ihis Orbitry sequente uich is possibly {nfinite, and So any Feduced word for U in W appears a1 a sraning sedtion

of o seoence of dhe form 2. So i (Si,...,Si) say s a4 word Be W, ehen twis s reduced and S if we = (si,v)

is reduced, ‘hen Gwoe lhas reduced wod & , and so Llwe) = 0(s:) + 2(a) = 2(w) + 2(u'wo).

Since Lg(u'we) 2o, = 2Cwe) %, (), 5o £(u) is bounded ¥ W €W = W finite  (remember W is
Finively Senemed)- This s a tontradiction (we assumed W infinite) , and sv 4nere can be no Suh  we EW. We've
thus  ( almost) proved  the contmapositive. lye just wneed to  show +the claim i bwe.

proof of claim: base  case : when i<l ,  tvue by the @xchange (onditin. We Know that YseS§, 2s(swo) < L3(wy),
ond So we an ex change Some  t; in &  reduced word dfor Wwo for S P\MC“ ab e  veginning:

i.e. it (by,.nte) a  reduced word Lo wo, Fnen Woz Sby-- :. te, and (s, b.,...,f;,...,u.) o reduced

word for  wo SHW.

Tnductive hypovhesis:  Ossume  that  we has a reduced expression starting with  Si-i. Then WIS twat has one
Starking  with  Si . Now again by +he  Qxchange  Londitien, L(siwe) ¢ Cs(wo), 56  we have inav e con
exchange some t in +he reduced eypression stortfag wikh  Si-t R S; placed O e begimming. The idea
then +hat ¥ we have Say wo Was ceduced word  ( Si-i, Si-2, --,S1, Y0, o, Yk), then we cannol

omit one 6 tne ?,' 's.  Say t s in the initial stving, then

Siot o Si(—) T Si..o Sjesi(—)

Then  (anelling  +he  Stuff in +he Brackers ond up t Sj-1 gives us

s;-.---s'j = St Sja
Bw  this  means that iz Csi,ys) = Csisi, oo 8i,55,,5) ) which is nov reduced. <. Se  we exchange
Si foc ol after £i-1, and 4he claim  holds- I:’

lemma 313 °  Foc TCS , +here is @ unique element w of minimal length  in the Coser  WWy , such +hat alb

elements w' € WWr  can be written in +he Form w'zwa , 6€ W7 such that

2s\w') = g (w) + £s(a)



poof: le+ W be a minimal length elememt in WWT . This [oors Q litle  funny buwr is  oKay , just thiak abour +he

fact  hat WWris a (o0et, Ondso Can be weritten in  mulkiple diffevent ways  Prywoys bur i w € wWi, inen
We wg b gome ge Wi, 50 uWr € wWr | Ase Wz ug™, and e wWW1 g uWr 3 wWy = uWT.  plright 50 we

dott  hove to sivess  foo Mudn  Ghowt  ¢ne nmotation.

Supfose w has min- lev\g\-h in  WWT. \Write w! in wWr as wb with e WTt. et u and S be
reduced  words far W and b respecrively.  Then hs (uncuumnon\, s & word p, w' - perhaps  not reduced.

Suppose Uus is nod reduced.

hen (D) can delete bus  jekbers in U and 3. Boly (canmet be in v, since w had  minimal length- Bova

Canner  ve in S o¢ 3 wnov ceduced. DBlso Cannot have one in U and ene in 3 , as then mMulkiplying by

- 4

A -
(sy... s% --o50)” on RAHS s'wes Jou Q@  shorker word than W {n  the (osed (! with ot guy removed).

2 UsS i reduced, and hence () = 2(w) k).

To see unigueness, now  suppose  4two  Such elements v ond W gre in WWT, Q(v) s L(w). Then v=wb

for some b€ WT) ond Z(wb) T 2(w)+ 2(b) = E(V)_ 2 0(b) =0 so b<e = v=w

]

PrDPOSi-Hol\ .14 H wEW, In(w) € S ) i-e. w‘.\‘.n(!») s Nni\'L

’

proof: consider  ihwe (Loset w Win(w) and let n be the uniqgue  Rlement ot minimal length.  Then by lemma

-, weEwWr,(w) n pe widen as  wzuwa, A€ Win , St
Lslw) = g5(w) + Lsla) &

Now Y se Inlw), we have Bs(ws) « gslw) (1) b& dfn of Inw). Alss L s€ Inlw), as € Wrnlw) , So we

have ws = has Sariskies

Qs (ws) = £g(u) + £5Cas) (xx)

So 'wm “’) we sel.
(»x)

Ls(w) + eslas) ¢ g (w) + L5Ca)

P Rs(as) < 2s(a) V¥ s¢€ In(w)
=) es(sa') < gs(a?) NV s§¢ Inlw)
So we're n +the puiion of lemma 3.3 :  we have (Wln(wl: Iﬂ("“) G Coxerer syem  (simply using e

fact  that  Talw) €S), and 3 a™' € Wypw) (since a€ Winlw) st N se Inlw)
L5(sa') < esta).

So lemma 311 says> that Winlw) 5 finite, ie. In(w c$. |:|



lemma 3:20° The chamber K of (W,5) is  Comractivle ond for TES, KkT:z cor Kt i o comeadivle.
pF: remembelr we said 4hat K was  the Cone on the  panycentic  subdivision oF  the nerve of (w,s), LCws).
INe  (one  on anything i3 Contmerivle  bo  the cone point, So k is  conhactivle.
Now  for ¢116$, T spans a  siwmpley o1 in L (toor bact at dfn ot L, has Simplices  sel e\%v3,
and if T € S\iﬁs, then the elements &€ T are the verdices of the simplex S  in L. Let o' denore the
H ' . . tnink  Qbdut  Seme more
bavg(enmc Subdivision of g4 a L. Then 01 S (ontractible ( a\so can +hink  qoout # as une\ ) So 4o Swow
thav k1 is (ontmcible, its @noughh o consvuct O debsmation  retractien vt KT = &4 . NOW a veréex
1€ K'Y preans tha % lies in  some K& , whith CorrespondS to  Subsets T'es st tet. Im parhular,
T'0T #6, sv we can map x €KY o o vertex  of T3’ comesponding o T'OT
We extiend s to simplices by mapping  simplex  Tu  with  Verkices Lo, ) b smplex T TOVo, ... TONY
( evek? & 3 ToateVi ¥V o0cisk)  need 9o owr preob I:l
Prof of Theorem 31y
Recall--. Theorem T:\U:  The Davis complex Z(W.S) 1S (ompcackible.
Liss.  the clements of W as  w, wy, wy, ... such +hat Ls(wn) € Rslwan) Va2l 1t w is finite, ¥aen
fepeat  #ae  las)  element 5o we wave an  infiaite W
()
Ler Un = 3. V“u--w“"‘% C \NI So w = “\gl\kn
n
let Pz U wk = LU wik € Z(w,3)
WeEUn (K]
-
So P € Piev ond Z = .'L=)|P:_
Now  Pa = Pnar U ek

9lue along wmicrors.

J
$ ks | 2(was) < 2(wn)y = S\&s | s€ Tn(wa)}. So we gue aleg K

need fo +hink abour this

Which mirrors  do we glue along?

By propositien 319,

In (wa)
Tnlwn)
In(w) € S, So by lemma %.20, K " ®  Contractible.
We wave Ps =X is Comcactible , and o get Pn fom Pnat we guue o0a wak  ( whith i Ccomractible  Since
K is tontmehble  and WA K oreserves Stwdwee o K) , olong K™V, wiich 15 conwactible.

D ab eath stage  p, is Lenkatkible = I is  conkmctible.

[]



Example 7.21: I = o— Dob.

List  elements: €, s, &, St, bs, sts = tst

Po = K  which \ooks ke

ke ks
Talsl = 15} ,se giue: ger ?;:
In(t) = Ft9, so glue get P
tk s
Tn(st) = §43 1521 P3:
stk
tk sk
1’\(“)7 ‘fs’s, 9e4 Py
sk stk
tk sk

'Jn(stS) = Ss,ti , S\ue aleny k¢ oand ks, 9er Ps:

esk

and Ps = Z(W/K) s donel



